
BDT: Gradient Boosted Decision Tables for High Accuracy and
Scoring Efficiency

Yin Lou∗
Airbnb, Inc.

yin.lou@airbnb.com

Mikhail Obukhov
LinkedIn Corporation

mobukhov@linkedin.com

ABSTRACT
In this paper we present gradient boosted decision tables (BDTs).
A d-dimensional decision table is essentially a mapping from a
sequence of d boolean tests to a real value in R.

We propose novel algorithms to fit decision tables. Our thor-
ough empirical study suggests that decision tables are better weak
learners in the gradient boosting framework and can improve the ac-
curacy of the boosted ensemble. In addition, we develop an efficient
data structure to represent decision tables and propose a novel fast
algorithm to improve the scoring efficiency for boosted ensemble of
decision tables. Experiments on public classification and regression
datasets demonstrate that our method is able to achieve 1.5x to 6x
speedups over the boosted regression trees baseline. We comple-
ment our experimental evaluation with a bias-variance analysis
that explains how different weak models influence the predictive
power of the boosted ensemble. Our experiments suggest gradient
boosting with randomly backfitted decision tables distinguishes
itself as the most accurate method on a number of classification and
regression problems. We have deployed a BDT model to LinkedIn
news feed system and achieved significant lift on key metrics.

CCS CONCEPTS
• Computing methodologies→ Ensemble methods;

KEYWORDS
classification; regression; decision table; gradient boosting

1 INTRODUCTION
Gradient boosting is one of the most popular machine learning
methods with many applications in classification and regression [6,
7, 9, 14, 19]. It builds an additive model by a greedy stagewise
procedure [7, 9] and forms an ensemble of weak regression models,
typically regression trees [3]. Standard regression tree learning
method grows a tree using the divide-and-conquer algorithm by
recursively partitioning the feature space. Each split of an internal
node is a binary split on some feature that minimizes the squared
∗Work done while at LinkedIn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00
https://doi.org/10.1145/3097983.3098175

x3 <= 5 x6 <= 0 f

0 0 2
0 1 7
1 0 5
1 1 0

0 5 7 2

x3 ≤ 5

x6 ≤ 0 x6 ≤ 0

Figure 1: Decision table and its tree equivalent.

error. Multiple stopping criteria can be employedwhen constructing
a tree, e.g., limiting by depth, limiting by number of leaves, etc.

A decision table (DT), on the other hand, is a function of the form
f : Bd → R; it maps a sequence of d boolean tests to a real value in
R. We note that a d-dimensional decision table is equivalent to a full
(binary) regression tree of depth d where all nodes at the same level
share the same test. Figure 1 illustrates a decision table and its tree
equivalent. It is also easy to see that given an arbitrary regression
tree, there exists a decision table equivalent. Therefore, there is no
difference in representational capacity between regression trees
and decision tables. However, a d-dimensional decision table is
more restricted compared to a regression tree of depth d since there
can be potentially 2d − 1 different splits for such regression tree
while the decision table will only have at most d different cuts.

Although regression tree is the de facto weak learner in gradient
boosting, we note that it is just one implementation of the gradient
boosting machine [7]. In this work, we consider gradient boosted
decision tables (BDTs) for classification and regression. Decision
tables are interesting in the modern setting of gradient boosting
for the following reasons.

First, we now have better understandings of the bias and variance
tradeoff for gradient boosting; it greatly reduces the bias but may
come with the price of increasing variance [1, 10]. It is well known
that the predictive power of boosting can be dramatically improved
via regularization, such as shrinkage, subsampling, or complexity
control of weak models [7, 8]. Common approaches of controlling
complexity for regression trees is to limit the tree size. However,
trees can still freely cut the feature space by greedy induction.
Decision tables, on the other hand, control the model complexity
by restricting how to place cuts; when placing a cut, we have to
place a full cut in the feature space.

Second, for regression trees, one usually needs to decide how to
control the complexity of each tree (e.g., limiting the trees by depth
or by number of leaves) in gradient boosting. The most accurate
ensemble model is usually selected by including all available op-
tions, resulting in a large parameter space. Hence, model selection
could be quite expensive. However, due to the restricted structure,
dimension is the main tuning parameter for decision tables and
therefore model selection is much easier in gradient boosting.

https://doi.org/10.1145/3097983.3098175

Third, there is usually a tradeoff between scoring efficiency and
model accuracy when deploying boosted ensembles to many real
world applications, such as recommendation systems. A decision
table can be represented using a compact data structure, which
leads to small memory footprint. As we will see in Section 4.5,
scoring a d-dimensional decision table is much faster than scoring
regression tree of depth d since decision tables are more cache
friendly. Therefore, it is easier to train larger (and more accurate)
models without increasing the scoring latency.

In this paper, we propose novel algorithms to fit decision ta-
bles. Our experiments suggest that boosted decision tables are
consistently more accurate than boosted regression trees (BRTs)
on classification and regression problems. To further shed the light
on the accuracy of various boosted ensembles, we complement our
experimental evaluation with a bias-variance analysis that explains
how different weak models influence the predictive power of the
boosted ensemble. In addition, we develop an efficient data struc-
ture to represent decision tables and propose a novel fast algorithm
to improve the scoring efficiency of BDTs. Our empirical results
demonstrate that our method is able to achieve 1.5x to 6x speedups
over boosted regression trees. To evaluate our approach in real
world applications, we present the offline and online experimental
results on LinkedIn news feed system that illustrate the advantage
of our model.

In summary, we make the following contributions in this paper.

• We propose novel algorithms to fit decision tables and intro-
duce boosted decision tables (BDTs).
• We develop an efficient data structure to represent decision
tables and propose a novel fast algorithm to improve the
scoring efficiency of BDTs.
• We show through a thorough experimental evaluation on
public datasets that boosted decision tables aremore accurate
than boosted regression trees on classification and regression
problems.
• We present a bias-variance analysis to show how different
weak models influence the generalization error and we find
that BDTs are low bias and low variance.
• We find empirically that our method of scoring BDTs is able
to achieve 1.5x to 6x speedups over baseline methods.
• We report our successful deployment of boosted decision
tables to LinkedIn news feed system and present offline and
online experimental results.

The rest of this paper is organized as follows. Section 2 presents
preliminaries. In Section 3, we present algorithms for learning deci-
sion tables. Experimental results on public datasets and LinkedIn
news feed are presented in Section 4 and Section 5, respectively.
We present related work in Section 6 and conclude the paper in
Section 7.

2 PRELIMINARIES
LetD = {(x i ,yi)}N1 denote a dataset of size N , where x i = (xi1, ...,
xip) is a feature vector with p features and yi is the response. Let
x = (x1, ...,xp) denote the features in the dataset. In this paper, we
consider regression problemswhereyi ∈ R and binary classification
problems where yi ∈ {0, 1}. Let [n] denote the set {1, 2, ...,n}.

Algorithm 1 Gradient Boosting
1: F ← 0
2: form = 1 toM do
3: ri ← current (pseudo) residual for i ∈ [N]
4: R ← {(x i , ri))}N1
5: Tm ← a regression model trained on R
6: F ← F + νTm

Gradient boosting is an ensemble method that builds an addi-
tive model by a greedy stagewise procedure [7, 9]. It aims to find
an approximation F (x) of the unknown true function F ∗ (x) that
minimizes the following objective function,

L(y, F (x)), (1)

where L(·, ·) is a non-negative convex loss function. When L =
1
2N
∑N
i=1 (yi − F (x i))

2, our problem becomes a regression problem
and if L = 1

N
∑N
i=1 log(1 + exp(−yiF (x i))), we are dealing with a

classification problem. Typically regression tree is the main weak
learner in gradient boosting.

Algorithm 1 summarizes the general gradient boosting algorithm.
At each iteration we form the current residuals (Line 3-4), build a
regression model on the residuals (Line 5) and add it to the current
ensemble (Line 6); ν is the shrinkage parameter called learning
rate. M controls the total number of models in the ensemble. In
this paper, we consider MART [7] for regression problems where
ri = yi−F (x i) and robust LogitBoost [9, 13] for binary classification
problems where ri = yi − pi and pi = 1/(1 + exp(−F (x i))) is the
probability of x i being in positive class.

Gradient boosting usually requires regularization to avoid over-
fitting, such as shrinkage, subsampling, and model complexity con-
trol, etc. Shrinkage reduces the variance of each added model [7].
Subsampling introduces randomness into the algorithm and helps
prevent overfitting [8]. Common choices of controlling the tree com-
plexity include limiting depth or limiting number of leaves [10, 19].
Decision tables naturally serve as a class of high-bias predictor to
control the model complexity, and dimension d is the main param-
eter to tune for gradient boosting.

3 DECISION TABLES
In this section, we present data structures for decision table and
learning algorithms of fitting decision tables. We also discuss a
highly efficient scoring method for boosted decision tables.

3.1 Representation
We first describe our data structure to represent decision tables.
Given a d-dimensional decision table, we use an array of length
d to store the feature index, another array of length d to store
the corresponding cuts, and an array of length 2d to store the
predictions for each combination of the d tests.1 The prediction
value is indexed through a bit vector of length d that represents
the results for the d tests. Figure 2 illustrates an example for a 3-
dimensional decision table. For input x i = (0, 3, 4, 2, 1, 0), we go
through three tests: x3 ≤ 5, x6 ≤ 0 and x2 ≤ 1 and generate a bit
vector [110]2 = [6]10. Now we can locate the prediction as the 7th
1Note that d is usually small when used in boosted ensemble.

features 3 6 2

cuts 5 0 1

x i = (0, 3, 4, 2, 1, 0) 1 1 0:

predictions

4

0
1
2
3
4
5
6
7

Figure 2: Compact representation of decision tables.

element in the prediction array using the bit vector as index. Such
representation leads to very small memory footprint and makes it
quite cache friendly.

3.2 Learning Decision Tables
3.2.1 Algorithm. Let us first define how to evaluate a test. Let

dom(x j) = {v
1
j , ...,v

dj
j } be a sorted set of possible values for vari-

able x j in descending order, where dj = |dom(x j) |. Given d − 1
boolean tests (cuts), the feature space is divided into at most 2d−1
partitions. To evaluate the d-th test, we aim to find a cut on some
feature so that the squared error can be minimized.

For each partition k , let Dk denote the subset of points in that
partition. For any cut c ∈ dom(x j), letDL

k = {x i | x i ∈ Dk ∧ xi j ≤
c} denote the points in Dk whose value on feature j is smaller
than or equal to c and let DR

k = {x i | x i ∈ Dk ∧ xi j > c} denote
the points in Dk whose j-th feature value is larger than c . Let
ILk = {i | x i ∈ D

L
k } denote the indices of points inD

L
k and similarly

we define IRk = {i | x i ∈ D
R
k }. We define the squared error on

subset Dk as SEDk =
∑
i ∈Ik (yi −yk)

2, where yk =
1
|Ik |

∑
i ∈Ik yi .

The gain for a test on feature x j at cut c is

Gain(x j , c) =SED −
∑
k

(SEDL
k
+ SE

DR
k
) (2)

=
∑
k

*.
,

(
∑
i ∈ILk

yi)
2

|ILk |
+

(
∑
i ∈IRk

yi)
2

|IRk |

+/
-
− Ny2 (3)

where y = 1
N
∑N
i=1 yi .

Thus, the gain for feature x j is

Gain(x j) = max
c ∈dom(x j)

Gain(x j , c). (4)

With this evaluation function, we can now design the learning
algorithm for fitting decision tables. It is easy to see that learning
the optimal decision table is NP-complete and therefore we propose
a backfitting algorithm as illustrated in Algorithm 2.

We first greedily find d tests one by one for the decision table dt
(Line 1-4). By the greedy nature those d tests will not necessarily be
optimal. For example, consider an extreme case where we greedily
find tests on a parity function, any cuts on such space will generate
equal gains and the greedy algorithm will only find random cuts.
Therefore, once we have a decision table of d tests, we employ the
backfitting algorithm with n passes to correct some suboptimal
cuts in the previous run (Line 5). For each pass we optimize for
d cuts (Line 6). Each time we pick one of the existing d cuts to

Algorithm 2 Fit Decision Table of Dimension d

1: for t = 0 to d − 1 do
2: (x j , c) ← argmaxx j ,c Gain(x j , c)
3: dt .features[t]← j
4: dt .cuts[t]← c
5: for pass = 1 to n do
6: for t = 0 to d − 1 do
7: k ← next() {Pick the k-th cut to optimize}
8: remove the k-th cut from dt
9: (x j , c) ← argmaxx j ,c Gain(x j , c)
10: dt .features[k]← j
11: dt .cuts[k]← c
12: update dt .predictions
13: return dt

optimize according to some criteria (Line 7). We remove that cut
from the current decision table (Line 8), compute the best cut that
achieves the highest gain given all other cuts (Line 9) and update
that cut in the decision table (Line 10-11). In the end, we compute
the prediction value as the average value of targets in each partition
(Line 12). We note that it is the simple structure of decision table
that allows us to perform backfitting, while it is hard to correct
suboptimal splits in regression trees.

We now discuss how to pick the next cut to optimize since the
next method determines how to perform backfitting. In this work,
we consider three variants of backfitting as follows.
• Cyclic backfitting. This is the standard backfitting algorithm;
we go back to the first cut and re-optimize all cuts in sequen-
tial “cyclic” order.
• Random backfitting. We randomly select a cut in the current
decision table to backfit.
• Greedy backfitting. This is the greedy stagewise approach
where we select a cut to backfit that gives the largest reduc-
tion in variance.

It is possible to perform multiple passes of backfitting but as
we will see in Section 4.2, additional passes of backfitting result in
diminishing returns and can sometimes overfit. In most cases, we
perform at most one pass in backfitting.

3.2.2 Implementation Details. Equation (4) is somewhat similar
to the splitting criterion in regression tree induction. The main dif-
ference is that we can not recursively build cuts since theGain(x j , c)
requires we have access to all data points in nodes when building
d-th cut. Efficient computation ofGain(x j) is critical to a scalable de-
cision table learning algorithm. Naïve implementation of Gain(x j)
can be expensive. In this section, we discuss an efficient implemen-
tation of computing Gain(x j). Note that since Ny2 is a constant,
we ignore this term when computing Gain(x j).

We now introduce the data structures needed for efficient com-
putation of Gain(x j). For each feature x j we take its unique value
set dom(x j). Since dom(x j) is sorted in descending order, the first
element is the largest value for x j . For each valuevkj ∈ dom(x j), we
define the set I (vkj) = {I

k
j,1, ..., I

k
j,Lkj
} as the indices of points such

that ∀i ∈ I (vkj),xi j = vkj and Lkj = |I (v
k
j) |. Figure 3 illustrates

x j v1j v2j ... v
dj
j> > >

I1j,1
...

I1
j,L1j

...

D
x I 1j,1

Figure 3: Data structure for DT construction.

111 110 101 100 011 010 001 000

x3 ≤ 5

x6 ≤ 0

?

Figure 4: Example of decision table construction.

an example of our data structure. Note that we are essentially re-
organizing the data using inverted indexes for each ⟨feature, value⟩
pair.

Assume we want to compute the gain of feature x j for d-th cut,
we will have at most 2d partitions of the data. The key problem
is that for each cut c , we need to quickly identify the points in
each partition. To this end, we first label those partitions from 0
to 2d − 1 in binary format as we discussed in Section 3.1. Figure 4
illustrates an example using tree representation where the first
two tests have been found. We maintain an array L of length N
indicating the partition label for each point x i ∈ D. For example,
if x i is in partition [011]2, we will have L[i] = 3. For any feature x j ,
we start with its largest value v1j . This means all points are initially
in the shaded circles as illustrated in Figure 4. Suppose we are now
testing the cut v2j , the second largest value for x j , we only need
to move all points x i for i ∈ I (v1j), from the shaded circle to its
right. Using our notation for partition labeling, we only need to
decrement L[i] by 1 for each i ∈ I (v1j).

Algorithm 3 summarizes the procedure of computing the gain of
x j for d-th cut. We need two auxiliary arrays, sum and count, both
of length 2d , where sum[k] stores the sum of targets of the points
in partition k and count[k] is the number of points in partition k ,
for k ∈ {0, ..., 2d − 1} (Line 3-4). For each value v in the sorted set
dom(x j), we get its indices set I (v) (Line 5-6). Since we iterate the
values in dom(x j) in decreasing order, we always move some points
from the left circle to the right circle. Therefore, using the partition
label array L, we can easily update the sum and count for the two
siblings (Line 7-10). Now we compute the current gain for the cut
feature x j at v (Line 12-14) and update the best gain accordingly

Algorithm 3 Compute Gain(x j)

1: bestGain ← −∞
2: c ← 0
3: count← auxiliary array of length 2d

4: sum← auxiliary array of length 2d
5: for v ∈ dom(x j) do
6: for i ∈ I (v) do
7: count[L[i]]← count[L[i]] − 1
8: sum[L[i]]← sum[L[i]] − yi
9: count[L[i] − 1]← count[L[i] − 1] + 1
10: sum[L[i] − 1]← sum[L[i] − 1] + yi
11: g← 0
12: for k = 0 to 2d − 1 do
13: if count[k] , 0 then
14: д ← д + sum[k]2/count[k]
15: if д > bestGain then
16: bestGain ← д
17: c ← v
18: return (c,bestGain)

(Line 15-17). Finally we return the best cut c and its corresponding
gain (Line 18). It is easy to see the running time for computing the
best cut for all features is O (Np), same as that of regression trees.

3.3 Efficient Scoring in Boosted Ensemble
Thanks to the simple structure of decision table, it is possible to
scale up the ensemble scoring. Recall that in order to obtain the
prediction from a decision table, we only need to know the bit
vector that represents the index to look at. Our key observation
is that in order to score a boosted ensemble of decision tables, we
do not need to go through all tests in the decision table ensemble
(which is usually the case for boosted regression trees).

Figure 5 illustrates an example of our data structure for fast
BDT scoring. For each feature x j , we collect all tests on x j in the
ensemble and build an index table to store those tests. Each index
table has three fields; cut, tid (decision table id) and pos (test
position), and the table is sorted by cut in decreasing order. Assume
the model is an ensemble of d-dimensional decision tables, to score
an input feature vector x , we first initialize a prediction index array
Pwhose length is the number of the decision tables in the ensemble.
All elements in this array is initialized to 0. Now we iterate over all
index tables. For each table, we find all entries whose cut values
are no less than the current feature value and set the corresponding
bit to 1 using tid and pos. Since the table is pre-sorted by cut, we
only need to do a linear scan from the largest cut until we find the
first cut that is less than the feature value. For example, x1 is 3 in
Figure 5 and we look at its corresponding table. We find that cut
values for the first two entries is larger than or equal to 3, we will
set the 5th bit in P[7] and the 1st bit in P[1] to 1 and move on to
next feature since all tests below the first two entries will be not
pass and their corresponding bits are 0 by default. Therefore, we
can potentially skip lot of tests.

Algorithm 4 summarizes our approach of scoring BDTs. For each
feature x j , we get its index table cuts (Line 2-3) and scan through
cuts. If the current feature value x j passes the current test, we set

x 3

8
5
2

7
1
3

4 1

0 1

2 prediction index
...

-1 2 1
cut tid pos

Figure 5: Data structure for fast BDT scoring.

Algorithm 4 Fast Algorithm of Scoring BDTs
1: P← 0
2: for j = 1 to p do
3: cuts← index table for feature j
4: for i = 0 to cuts.lenдth − 1 do
5: if x j <= cuts[i].cut then
6: t ← 1 << (d − 1 − cuts[i].pos)
7: P[cuts[i].tid]← P[cuts[i].tid] | t
8: else
9: break
10: pred ← 0
11: for i = 0 to dt.lenдth − 1 do
12: pred ← pred + dt[i].predictions[P[i]]
13: return pred

Dataset Size Attributes %Pos
Wine 4989 12 -

CompAct 8192 22 -
Pole 15000 49 -
Bike 17379 15 -

CalHousing 20640 9 -
Magic 19020 11 64.84
Letter 20000 17 49.70
News 39644 59 53.36
Bank 45221 16 11.70
Physics 50000 79 49.72

Table 1: Datasets.

the corresponding bit indicated in that table entry to 1 (Line 5-7),
otherwise we can safely leave the bit value for all remaining tests
to 0 (Line 9). Once we have iterated through all features, we use the
updated prediction index array P to look up the prediction value in
each decision table’s predictions array (Line 10-12).

As we will see in Section 4.5, our approach can achieve 1.5x to
6x speedup compared to standard approach to scoring.

4 EXPERIMENTS ON PUBLIC DATASETS
In this section, we report experimental results of decision tables
and their ensembles on public datasets.2

2Code is available at https://github.com/yinlou/mltk.

4.1 Datasets
Table 1 summarizes the ten datasets used in our experiments. Five
are regression problems: The “Wine” and “Bike” datasets are from
the UCI repository.3 “CompAct” is from the Delve repository and de-
scribes the state ofmultiuser computers.4 “Pole” describes a telecom-
munication problem [20]. “CalHousing” describes how housing
prices depend on census variables [17] . The other five datasets are
binary classification problems: The “Magic,” “Letter,” “News” and
“Bank” datasets are from the UCI repository. We convert “Letter”
into binary classification using the same method in [6]. “Physics”
is from the KDD Cup 2004.5

4.2 Decision Tables
Since decision table is a regression model, we run experiments on
all five regression problems to study the its accuracy. In this experi-
ment, we train on 80% of the data and hold 20% of the data as test
sets. We consider decision tables with cyclic backfitting (DTcbf),
random backfitting (DTrbf) and greedy backfitting (DTдbf).

We build the decision tables of dimension 2, 4, and 8 on the
training sets. Due to space limitation, we only present results on
“CalHousing” dataset. Results on other regression datasets are sim-
ilar. In Figure 6, we report root mean squared error (RMSE) on
test sets and running time for constructing the decision tables. We
first observe that in most cases, with more backfitting passes the
RMSE on test sets does not decrease significantly. In some cases the
highly optimized decision tables may slightly overfit. This is a clas-
sic behavior of the backfitting algorithm; the very first few passes
explain the most of the variance while adding more passes does
not lead to meaningful improvement. On the other hand, Figure 6
suggests the training time increases proportionally as the number
of passes increases. Thus, from now on we will only use one pass
of backfitting for optimizing decision tables.

In addition, we notice that greedy backfitting takes significantly
more time than the other two methods. This is because we need
to search for the best test to optimize for each iteration, which
is usually very expensive. Therefore, we will only consider cyclic
backfitting and random backfitting in gradient boosting framework.

4.3 Boosted Decision Tables
In this section, we report experimental results on boosted ensembles.
Based on the results in Section 4.2, we consider the following weak
learners; number of leaves limited regression tree (BRTl), depth
limited regression tree (BRTd), decision table without backfitting
(BDT), decision table with one pass of cyclic backfitting (BDTcbf),
and decision table with one pass of random backfitting (BDTrbf).
For BRTl and BRTd , we use the implementation in MLTK.6 We also
experimented XGBoost. Both MLTK and XGBoost implement gradi-
ent boosted trees but XGBoost only allows depth limited regression
trees and in our experiments, these two packages produce similar
accuracy.

For all experiments in this sectionwe fix our shrinkage parameter
as 0.01 and build at most 10,000 models. We consider d ∈ {1, 2, ..., 9}

3http://archive.ics.uci.edu/ml/
4http://www.cs.toronto.edu/~delve/data/datasets.html
5http://osmot.cs.cornell.edu/kddcup/
6https://github.com/yinlou/mltk

https://github.com/yinlou/mltk
http://archive.ics.uci.edu/ml/
http://www.cs.toronto.edu/~delve/data/datasets.html
http://osmot.cs.cornell.edu/kddcup/
https://github.com/yinlou/mltk

RMSE on test set Training Time (s)
Depth 2 Depth 4 Depth 8 Depth 2 Depth 4 Depth 8

 5
 6
 7
 8
 9

 10
 11
 12

1 2 3

of Backfitting Passes

DTcbf
DTrbf
DTgbf

 5
 6
 7
 8
 9

 10
 11
 12

1 2 3

of Backfitting Passes

DTcbf
DTrbf
DTgbf

 5
 6
 7
 8
 9

 10
 11
 12

1 2 3

of Backfitting Passes

DTcbf
DTrbf
DTgbf

 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

1 2 3

of Backfitting Passes

DTcbf
DTrbf
DTgbf

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

1 2 3

of Backfitting Passes

DTcbf
DTrbf
DTgbf

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3

of Backfitting Passes

DTcbf
DTrbf
DTgbf

Figure 6: RMSE on test sets and training time for optimized decision tables for “CalHousing” dataset.

for depth limited trees and decision tables, while for number of
leaves limited trees, we consider l ∈ {2, 4, ..., 512}. We randomly
partition the dataset into training (64% of the data), validation
(16% of the data) and test sets (20% of the data). We pick optimal
parameters (d , l and number of models in the ensemble) using
validation set. We do not wish to exhaustively search for the best
combination for boosting, but rather show the effectiveness of
using different models as weak learners. For regression problems
we use RMSE as our metric and we employ error rate for binary
classification problems. All experiments are repeated 5 times and
we report mean and standard deviation of the evaluation results on
test sets.

The regression and classification results are presented in Table 2
and Table 3. We report normalized scores in the last column of
the two tables. For both regression and classification problems,
we normalize by min(BRTl ,BRTd). This is the best RMSE or error
rate that we can achieve on held-out test data for gradient boosted
regression trees by peeking the results on test sets. Note that this
sets up a very high baseline.

Interestingly, we observe BDTs are more accurate than BRTs; on
average, BDT reduces the error by 4% on regression problems and
reduces 3% error rate on classification problems. In our experiments,
BDTs are almost always more accurate than BRTs. This suggests
that using decision table is a reliable approach to regularization
and extra accuracy of boosted ensembles can be obtained.

For BDTcbf and BDTrbf , we can see that they further improve
the accuracy on both classification and regression problems. While
BDTcbf is sometimes less accurate than BDT (e.g., on “CompAct”
dataset), BDTrbf outperforms the other methods most of the time
and is the most accurate model on average in the experiment. On
average BDTrbf reduces the RMSE by 5% on regression problems
and error rate by 4% on classification problems. In the last row of
Table 2 and Table 3, we also present the p-value from a paired one-
tail t-test of BRTd and BDTrbf . On most cases the improvement is
significant.

4.4 Bias-Variance Analysis
The results in Table 2 and Table 3 show that using decision tables
or optimized decision tables in gradient boosting significantly im-
proves accuracy compared to regression trees. The main difference
is that decision tables and optimized decision tables have higher
bias and lower variance than regression trees.

It is well known that boosting reduces the bias but may lead to an
increase in variance [1]. In this section, we perform a bias-variance
analysis [11] on regression datasets. The expected squared error is
decomposed as follows,

E[(y − F (x))2] = Bias[F (x)]2 +Var [F (x)] + σ 2, (5)

where F approximates the true function and σ 2 is the irreducible
error.

We do not perform bias-variance analysis on classification prob-
lems since bias-variance decomposition on classification problem
is not as well defined. The bias-variance results for all regression
datasets are shown in Figure 7. We can see that BRTl and BRTd
have higher bias and sometimes the variance can be large as well.
When we use decision tables as the weak learner, surprisingly we
get lower bias for BDT, BDTcbf , and BDTrbf . It is also interesting
to see that the variance for gradient boosted decision tables are also
smaller, leading to a low bias and low variance model.

We note that although bagging can be used to reduce variance
for gradient boosted regression trees [10, 18], it usually requires
more resources to train and the model becomes very large to score.
From the results in Figure 7, we do not expect bagging would
help gradient boosted decision tables since the variance of the
model is so low to begin with. In addition, the results suggest that
using a high-bias-low-variance weak learner, we can take advantage
of the bias reduction from gradient boosting framework and the
variance reduction from the weak learner, leading to a single small
yet accurate model.

4.5 Scoring Efficiency
In this section, we study the scoring efficiency of various boosted
ensembles.

Scoring Single Model. In this experiment, we build regression
trees and decision tables on different d’s (depth for regression trees
and dimension for decision tables) and compare their scoring time.
We only present results on “CalHousing” dataset due to space limi-
tation, but we observe similar patterns on other datasets. Figure 9
illustrates the scoring time for regression tree and decision table as
d increases. The scoring time is averaged over 1000 trials. We can
see that for the same d (i.e., same number of tests to score), scoring
decision table is much faster using the bit vector representation
presented in Section 3.1 as it is more cache friendly. In addition, the
scoring latency of decision table increases much slower than that
of regression trees.

Model Wine CompAct Pole Bike CalHousing Mean
BRTl 0.6328±0.0279 2.3322±0.3245 4.3816±0.1417 3.1260±0.1685 4.6020±0.0782 1.0035±0.0056
BRTd 0.6308±0.0234 2.3399±0.3142 4.7898±0.2798 3.2174±0.2154 4.6576±0.0552 1.0305±0.0362
BDT 0.6290±0.0168 2.1383±0.0704 3.9809±0.2291 3.0139±0.4308 4.5304±0.0398 0.9591±0.0400

BDTcbf 0.6283±0.0250 2.1520±0.0770 3.8516±0.1270 2.9253±0.5048 4.5073±0.0806 0.9474±0.0485
BDTrbf 0.6197±0.0246 2.1224±0.0700 3.8338±0.1174 3.0190±0.5913 4.4998±0.0493 0.9468±0.0476

(0.1097) (0.0969) (0.0002) (0.2395) (0.0002)

Table 2: RMSE for regression datasets. Average normalized score on five datasets is shown in the last column, where the score
is calculated as relative improvement over min(BRTl ,BRTd). The last row shows p-value from t-test of BRTd and BDTrbf .

Model Magic Letter News Bank Physics Mean
BRTl 11.8297±0.3886 2.4000±0.2284 32.5135±0.8996 9.0661±0.1218 27.0120±0.2699 1.0068±0.0044
BRTd 11.7875±0.3750 2.5250±0.2000 32.4034±0.8517 9.0907±0.1576 27.0920±0.2293 1.0176±0.0288
BDT 11.3985±0.1423 2.1200±0.2168 32.3076±0.6184 9.0156±0.2594 26.8480±0.3897 0.9726±0.0438

BDTcbf 11.3933±0.3530 2.0850±0.3105 32.2238±0.5648 8.9624±0.2444 26.8480±0.3252 0.9679±0.0491
BDTrbf 11.3675±0.1793 2.0150±0.2690 32.1461±0.6896 8.9071±0.2189 26.7560±0.3502 0.9586±0.0615

(0.0092) (0.0003) (0.0710) (0.0136) (0.0051)

Table 3: Error rate for classification datasets. Average normalized score on five datasets is shown in the last column, where
the score is calculated as relative improvement over min(BRTl ,BRTd). The last row shows p-value from t-test of BRTd and
BDTrbf .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

BRT
l

BRT
d

BDT
BDT

cbf

BDT
rbf

Bias2

Variance

 0

 1

 2

 3

 4

 5

 6

BRT
l

BRT
d

BDT
BDT

cbf

BDT
rbf

Bias2

Variance

 0

 5

 10

 15

 20

 25

BRT
l

BRT
d

BDT
BDT

cbf

BDT
rbf

Bias2

Variance

Wine CompAct Pole

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

BRT
l

BRT
d

BDT
BDT

cbf

BDT
rbf

Bias2

Variance

 0

 5

 10

 15

 20

 25

 30

BRT
l

BRT
d

BDT
BDT

cbf

BDT
rbf

Bias2

Variance

Bike CalHousing

Figure 7: Bias-variance decomposition on regression datasets.

Scoring Ensemble. In real world applications, boosted ensem-
bles are usually built to achieve the best accuracy within the con-
straint of scoring latency. With scoring decision table being faster,
we can afford boosting more decision tables in an ensemble to
achieve a higher level of accuracy. However, note that a smaller
ensemble of decision table does not imply that it is less accurate.
In this experiment, we compare the scoring efficiency for the most

accurate BRTd and BDTrbf that we obtained in Section 4.3. Fig-
ure 9 demonstrates the averaged speedup from 100 trials on each
dataset. We see that our algorithm of scoring boosted decision ta-
bles described in Section 3.3 is able to achieve 1.5x to 6x speedup
compared to BRTd , since our scoring of BDTs leverages the bitwise
operation which makes it highly scalable to score a single decision
table and we do not need to go through all the tests in a boosted
decision table ensemble.

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

 1 2 3 4 5 6 7 8 9

Sc
or

in
g

Ti
m

e
(m

s)

d

Regression Tree
Decision Table

Figure 8: Scoring time on “CalHousing” dataset.

 1
 2
 3
 4
 5
 6
 7

Wine
CompAct

Pole
Bike

CalHousing

Sp
ee

du
p

ov
er

 B
R

T d

(a) Regression datasets.

 0.5

 1

 1.5

 2

 2.5

 3

Magic
Letter

News
Bank

Physics

Sp
ee

du
p

ov
er

 B
R

T d

(b) Classification datasets.

Figure 9: Speedup of BDTrbf over BRTd .

5 EXPERIMENTS ON LINKEDIN FEEDS
LinkedIn dynamically delivers update activities from a user’s inter-
personal network to more than 400 million members in the person-
alized feed that ranks activities according their “relevance” to the
user. In this section, we describe our offline and online experiments
on boosted decision tables using LinkedIn news feed dataset.

5.1 Offline Evaluation
We collect a subset of the feed activities in March 2016. The dataset
has around 40 million points with roughly 1500 features. We use a

C
lic

k
Th

ro
ug

h
R

at
e

Viral Action Rate

BRTd 50 trees with depth 7
BDTcbf 50 models with dimension 6
BDTrbf 100 models with dimension 12
Logistic Regression

Figure 10: Offline results on LinkedIn news feed.

separate validation set to select parameters and report results on a
held-out test set. We use XGBoost7 to build BRTd for scalability.

In this experiment, we study the tradeoff between click through
rate (CTR) and viral action (“like,” “share,” “comment,” etc.) rate.
We compare logistic regression, BRTd , BDTcbf and BDTrbf . The
features in the training set are “raw” features and those are the
features used in the boosted ensembles. For logistic regression, we
apply the feature transformation and feature interaction that are
currently used in production. Given that our dataset is large, there
is a limited number of weak models in a boosted ensemble that
we can train within reasonable time. In addition, due to the online
scoring latency constraint, we limit the size of BRTd to 50 trees
with depth 7. However, higher offline accuracy of BRTd can be
obtained by boosting more trees.

Figure 10 shows the results on our held-out test set. The resolu-
tion for each cell is 0.05×0.05.8 We first observe that all boosted en-
sembles outperform the logistic regression model on both CTR and
viral action rate, illustrating the advantage of boosted ensembles
over handcrafted linear models. Second, we see that the BDTcbf
using 50 decision tables with dimension 6 has similar predictive per-
formance compared to the largest BRTd model that we can obtain.
In our experiment, BDTcbf and BDTrbf result in similar predic-
tive performance and therefore for this setting we only present
BDTcbf here. Note that although predictive performance is simi-
lar on both BRTd and BDTcbf , BDTcbf is smaller than BRTd (for
using smaller d). The best model from our offline evaluation is
BDTrbf using 100 decision tables with dimension 12. We can see
that this model significantly outperforms other models in terms of
predictive performance.

7https://github.com/dmlc/xgboost
8Actual numbers are omitted in accordance with LinkedIn’s non-disclosure policy.

https://github.com/dmlc/xgboost

5.2 Online Evaluation
In many recommendation systems, such as LinkedIn news feed,
input features are usually divided into groups, e.g., user features,
engagement features, content features, interaction features, etc.
Typically, the model needs to generate scores for a list of recom-
mendation items for the same user, which suggests that the user
features will stay the same when scoring his/her recommendation
items. We note that further scoring efficiency can be achieved by
pre-setting the bit vectors that index the predictions on user fea-
tures, and only set relevant bits on other feature groups. Therefore,
we only need to score user features once, which cannot be easily
done when scoring boosted regression trees. With those optimiza-
tion methods for scoring, we are able to run an online evaluation
that compares boosted decision tables with the baseline production
model, a highly engineered logistic regression, without increasing
latency.

During offline evaluation we found that BDTcbf and BDTrbf
led to similar predictive performance under the same setting and
therefore we deployed BDTcbf using 50 decision tables with di-
mension 7 and BDTcbf using 100 decision tables with dimension
12 to LinkedIn news feed system. In the online experiment, each
model served 2% of the members. We collected online experimental
results for two weeks in July 2016. We found that both BDT models
achieved similar performance; our best BDT model achieved a 4.7%
lift on CTR and 6.3% lift on viral action rate, both were significant
with p-value = 0. We deployed the model using 50 decision tables
with dimension 7 to the production system since this model is much
smaller.

6 RELATEDWORK
Decision tables have been previously used for model interpretabil-
ity. Kohavi and Sommerfield have proposed to use decision tables
to better understand the data for business users [12]. Lou et al. have
developed a fast method of detecting pairwise feature interactions
for intelligibility using 2-dimensional decision tables, although not
explicitly stated [15]. Decision table is also related to oblivious re-
gression trees. An oblivious regression uses the same feature to
split one the same level. Capannini et. al have proposed Oblivious
λ-MART that boost oblivious regression trees for ranking prob-
lems [5]. The difference between our work and theirs lies in that we
are interested in boosting (optimized) decision tables for accuracy
and scoring efficiency.

Gradient boosted regression trees have been successful in many
applications [4, 6, 7, 9, 14]. Typically regularization is necessary to
improve the accuracy of boosted trees. It is known that gradient
boosting is a low bias but high variance method [1] and bagging [2]
can be used to wrap around gradient boosting to reduce the vari-
ance [10, 18]. In this work, we focus on controlling the model
complexity by employing decision tables and therefore, our method
is orthogonal to those previous work. Scoring gradient boosted
regression trees is typically slow. Novel methods have been de-
veloped to significantly speed up the prediction running time via
efficient representation of ensembles of binary regression trees [16].
However, those advanced methods usually require additional engi-
neering efforts. Our approach of scoring boosted decision tables is
intuitive and easy to implement.

7 CONCLUSION
We present gradient boosted decision tables (BDTs) in this paper. A
d-dimensional decision table maps a sequence of d boolean tests to
a real value in R and is equivalent to a full binary regression tree
where all nodes on the same level share the same test. It serves as an
excellent regularization method for gradient boosting. We propose
novel algorithms to fit decision tables and our thorough empirical
study suggests BDTs consistently outperform the standard gradi-
ent boosting using regression trees (BRTs) on classification and
regression problems. We present a bias-variance analysis to show
how different weak models influence the generalization error and
we find that BDTs are low bias and low variance. In addition, we
develop an efficient data structure to represent decision tables and
propose a novel fast algorithm to improve the scoring efficiency of
boosted ensemble of decision tables. We find empirically that our
method of scoring BDTs is able to achieve 1.5x to 6x speedups over
baseline methods. Our empirical results suggest gradient boosting
with randomly backfitted decision tables distinguishes itself as the
most accurate method. We have deployed our model to LinkedIn
news feed system and demonstrate the effectiveness of the model
through offline and online evaluation.

REFERENCES
[1] E. Bauer and R. Kohavi. 1999. An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants. Machine learning 36, 1 (1999), 105–
139.

[2] L. Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[3] L. Breiman, J.H. Friedman, C. Stone, and R. Olshen. 1984. Classification and

regression trees. CRC press.
[4] C.J.C Burges. 2010. From ranknet to lambdarank to lambdamart: An overview.

Learning 11 (2010), 23–581.
[5] G. Capannini, C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, and N. Tonellotto.

2016. Quality versus efficiency in document scoring with learning-to-rankmodels.
Information Processing & Management 52, 6 (2016), 1161–1177.

[6] R. Caruana and A. Niculescu-Mizil. 2006. An empirical comparison of supervised
learning algorithms. In ICML.

[7] J.H. Friedman. 2001. Greedy function approximation: a gradient boostingmachine.
Annals of Statistics 29 (2001), 1189–1232.

[8] J.H. Friedman. 2002. Stochastic gradient boosting. Computational Statistics and
Data Analysis 38 (2002), 367–378.

[9] J.H. Friedman, T. Hastie, and R. Tibshirani. 2000. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the authors).
Annals of Statistics 28 (2000), 337–407.

[10] Y. Ganjisaffar, R. Caruana, and C.V. Lopes. 2011. Bagging gradient-boosted trees
for high precision, low variance ranking models. In SIGIR.

[11] S. Geman, E. Bienenstock, and R. Doursat. 1992. Neural networks and the
bias/variance dilemma. Neural computation 4, 1 (1992), 1–58.

[12] R. Kohavi and D. Sommerfield. 1998. Targeting Business Users with Decision
Table Classifiers.. In KDD.

[13] P. Li. 2010. Robust logitboost and adaptive base class (abc) logitboost. In UAI.
[14] P. Li, C.J.C. Burges, and Q. Wu. 2007. McRank: Learning to Rank Using Multiple

Classification and Gradient Boosting. In NIPS.
[15] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. 2013. Accurate Intelligible Models

with Pairwise Interactions. In KDD.
[16] C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini.

2015. QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensem-
bles of Regression Trees. In SIGIR.

[17] R.K. Pace and R. Barry. 1997. Sparse spatial autoregressions. Statistics & Proba-
bility Letters 33, 3 (1997), 291–297.

[18] D.Y. Pavlov, A. Gorodilov, and C.A. Brunk. 2010. BagBoo: a scalable hybrid
bagging-the-boosting model. In CIKM.

[19] S. Tyree, K.Q. Weinberger, K. Agrawal, and J. Paykin. 2011. Parallel boosted
regression trees for web search ranking. In WWW.

[20] S.M. Weiss and N. Indurkhya. 1995. Rule-based machine learning methods for
functional prediction. Journal of Artificial Intelligence Research 3 (1995), 383–403.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Decision Tables
	3.1 Representation
	3.2 Learning Decision Tables
	3.3 Efficient Scoring in Boosted Ensemble

	4 Experiments on Public Datasets
	4.1 Datasets
	4.2 Decision Tables
	4.3 Boosted Decision Tables
	4.4 Bias-Variance Analysis
	4.5 Scoring Efficiency

	5 Experiments on LinkedIn Feeds
	5.1 Offline Evaluation
	5.2 Online Evaluation

	6 Related Work
	7 Conclusion
	References

