Intelligible Models for Classification and Regression

Yin Lou¹ Rich Caruana² Johannes Gehrke¹

Department of Computer Science¹ Cornell University Microsoft Research² Microsoft Corporation

Aug. 13, 2012

Yin Lou (Cornell University)

Simple Model

- Linear regression, logistic regression
- Regression: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n$
- Classification: $logit(y) = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$

Linear Regression

Simple Model

- Linear regression, logistic regression
- Regression: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n$
- Classification: $logit(y) = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$

Linear Regression

Intelligible but usually less accurate

Yin Lou (Cornell University)

Intelligible Models

Aug. 13, 2012 2 / 31

Complex Model

• Random forest, SVMs with RBF kernel, etc.

• $y = f(x_1, ..., x_n)$

Complex Model

• Random forest, SVMs with RBF kernel, etc.

• $y = f(x_1, ..., x_n)$

Unintelligible but usually more accurate

∃ →

Image: A match a ma

Intelligibility is important

- Medical applications
- Domains where we want scientific understanding
- Efficient model engineering
 - Impact of features in a ranker

Outline

1 Motivation

2 Towards More Accurate Models

3 Algorithms

4 Experiments

5 Discussion

3 Algorithms

4 Experiments

5 Discussion

- Developed by Hastie and Tibshirani
- Regression: $y = f_1(x_1) + ... + f_n(x_n)$
- Classification: $logit(y) = f_1(x_1) + ... + f_n(x_n)$
- Each feature is "shaped" by shape function f_i
- Intelligible and accurate
- T. Hastie and R. Tibshirani. Generalized additive models. Chapman & Hall/CRC, 1990.

Example

Model	Form	Intelligibility	Accuracy
Linear Model	$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$	+++	+
Generalized Linear Model	$g(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$	+++	+
Additive Model	$y = f_1(x_1) + \ldots + f_n(x_n)$	++	++
Generalized Additive Model	$g(y) = f_1(x_1) + \dots + f_n(x_n)$	++	++
Full Complexity Model	$y = f(x_1,, x_n)$	+	+++

Table: From Linear to Additive Models.

< 口 > < 同

Outline

Motivation

- 2 Towards More Accurate Models
- 3 Algorithms
 - 4 Experiments

5 Discussion

$$g(y) = f_1(x_1) + \ldots + f_n(x_n)$$

Shape Functions

- Splines (SP)
- Single Tree (TR)
- Bagged Trees (bagTR)
- Boosted Trees (bstTR)
- Boosted Bagged Trees (bbTR)

э

< ∃ >

$$g(y) = f_1(x_1) + \ldots + f_n(x_n)$$

Shape Functions

- Splines (SP)
- Single Tree (TR)
- Bagged Trees (bagTR)
- Boosted Trees (bstTR)
- Boosted Bagged Trees (bbTR)

Learning Methods

- Penalized Least Squares (P-LS/P-IRLS)
- Backfitting (BF)
- Gradient Boosting (BST)

$$g(y) = f_1(x_1) + \ldots + f_n(x_n)$$

Shape Function: Splines (SP)

•
$$f_i(x_i) = \sum_{k=1}^d \beta_k b_k(x_i)$$

$$g(y) = f_1(x_1) + \dots + f_n(x_n)$$

Shape Function: Single Tree (TR)

• $f_i(x_i) = RegressionTree(x_i, response)$

Yin Lou (Cornell University)

 $g(y) = f_1(x_1) + \ldots + f_n(x_n)$

Shape Function: Bagged Trees (bagTR)

• $f_i(x_i) = \frac{1}{B} \sum_{j=1}^{B} Regression Tree(x_i, bootstrap sample j)$

 $g(y) = f_1(x_1) + \ldots + f_n(x_n)$

Shape Function: Boosted Trees (bstTR)

• $f_i(x_i) = \sum_{j=1}^{B} Regression Tree(x_i, residual_j)$

$$g(y) = f_1(x_1) + \dots + f_n(x_n)$$

Shape Function: Boosted Bagged Trees (bbTR

• $f_i(x_i) = \sum_{j=1}^{B} BaggedRegressionTree(x_i, residual_j)$

Yin Lou (Cornell University)

- 4 3 6 4 3 6

æ

$$g(y) = f_1(x_1) + \dots + f_n(x_n)$$

Learning Method: Penalized Least Squares (P-LS/P-IRLS)

- Works only on Splines $(f_i(x_i) = \sum_{k=1}^d \beta_k b_k(x_i))$
- Converts the optimization problem to fitting linear regression/logistic regression with different basis

S. Wood.

Generalized additive models: an introduction with R. CRC Press, 2006.

 $g(y) = f_1(x_1) + \ldots + f_n(x_n)$

Learning Method: Backfitting (BF)

1: $f_j \leftarrow 0$ 2: for m = 1 to M do 3: for j = 1 to n do 4: $\mathcal{R} \leftarrow \{x_{ij}, y_i - \sum_{k \neq j} f_k\}_1^N$ 5: Learn shaping function S:

5: Learn shaping function $S: x_j \to y$ using \mathcal{R} as training dataset

6:
$$f_j \leftarrow S$$

- 7: end for
- 8: end for

T. Hastie and R. Tibshirani. Generalized additive models. Chapman & Hall/CRC, 1990.

 $g(y) = f_1(x_1) + \ldots + f_n(x_n)$

Learning Method: Gradient Boosting (BST)

1: $f_j \leftarrow 0$

- 2: for m = 1 to M do
- 3: **for** j = 1 to *n* **do**

4:
$$\mathcal{R} \leftarrow \{x_{ij}, y_i - \sum_k f_k\}_1^N$$

5: Learn shaping function $S: x_j \rightarrow y$ using \mathcal{R} as training dataset

6:
$$f_j \leftarrow f_j + S$$

7: end for

8: end for

J. Friedman.

Greedy function approximation: a gradient boosting machine. *Annals of Statistics*, 29:1189–1232, 2001.

- First large-scale study that uses trees as shape function for GAMs
- Novel methods for using trees as shape functions
- Largest empirical study of fitting GAMs

Outline

Motivation

2 Towards More Accurate Models

3 Algorithms

5 Discussion

	Dataset	Size	Attributes	%Pos
ĺ	Concrete	1030	9	-
uo	Wine	4898	12	-
SSI	Delta	7192	6	-
g L	CompAct	8192	22	-
Å	Music	50000	90	-
	Synthetic	10000	6	-
۲	Spambase	4601	58	39.40
tio	Insurance	9823	86	5.97
ica	Magic	19020	11	64.84
ssif	Letter	20000	17	49.70
	Adult	46033	9/43	16.62
Ŭ	Physics	50000	79	49.72

Yin Lou (Cornell University)

Aug. 13, 2012 22 / 3

イロト イ団ト イヨト イヨト

æ

Shape	Least	Gradient	Backfitting
Function	Squares	Boosting	Dacknitting
Splines	P-LS/P-IRLS	BST-SP	BF-SP
Single Tree	N/A	BST-TRx	BF-TR
Bagged Trees	N/A	BST-bagTRx	BF-bagTR
Boosted Trees	N/A	BST-TRx	BF-bstTR <i>x</i>
Boosted	Ν / Δ	BCT hagTDy	
Bagged Trees	IN/A	DO I-Dag I IX	

Table: Notation for learning methods and shape functions.

• 9 different methods

• 5-fold cross validation for each method

Model	Regression	Classification	Mean
Linear/Logistic			
P-LS/P-IRLS			
BST-SP			
BF-SP			
BST-bagTR2			
BST-bagTR3			
BST-bagTR4			
BST-bagTRX			
Random Forest			

Yin Lou (Cornell University)

3

Model	Regression	Classification	Mean
Linear/Logistic	1.68	1.22	1.45
P-LS/P-IRLS			
BST-SP			
BF-SP			
BST-bagTR2			
BST-bagTR3			
BST-bagTR4			
BST-bagTRX			
Random Forest			

Yin Lou (Cornell University)

3

Model	Regression	Classification	Mean
Linear/Logistic	1.68	1.22	1.45
P-LS/P-IRLS			
BST-SP			
BF-SP			
BST-bagTR2			
BST-bagTR3			
BST-bagTR4			
BST-bagTRX			
Random Forest	0.88	0.80	0.84

3

Results

Model	Regression	Classification	Mean
Linear/Logistic	1.68	1.22	1.45
P-LS/P-IRLS	1.00	1.00	1.00
BST-SP	1.04	1.00	1.02
BF-SP	1.00	1.00	1.00
BST-bagTR2			
BST-bagTR3			
BST-bagTR4			
BST-bagTRX			
Random Forest	0.88	0.80	0.84

3

Results

Model	Regression	Classification	Mean
Linear/Logistic	1.68	1.22	1.45
P-LS/P-IRLS	1.00	1.00	1.00
BST-SP	1.04	1.00	1.02
BF-SP	1.00	1.00	1.00
BST-bagTR2	0.96	0.96	0.96
BST-bagTR3	0.97	0.95	0.96
BST-bagTR4	0.99	0.95	0.97
BST-bagTRX	0.95	0.94	0.95
Random Forest	0.88	0.80	0.84

3

Model	Regression	Classification	Mean
Linear/Logistic	1.68	1.22	1.45
P-LS/P-IRLS	1.00	1.00	1.00
BST-SP	1.04	1.00	1.02
BF-SP	1.00	1.00	1.00
BST-bagTR2	0.96	0.96	0.96
BST-bagTR3	0.97	0.95	0.96
BST-bagTR4	0.99	0.95	0.97
BST-bagTRX	0.95	0.94	0.95
Random Forest	0.88	0.80	0.84

Observations

- Two accuracy gaps: shaping and interactions
- Tree-base shaping methods are more accurate than spline-based methods

Outline

Motivation

- 2 Towards More Accurate Models
- 3 Algorithms
- 4 Experiments

6 Conclusion

$Expected Loss = (bias)^2 + variance + noise$

э

Learned Shaped Function: Splines vs. Trees

Figure: Shapes of features for the "Concrete" dataset produced by P-LS (top) and BST-bagTR3 (bottom).

Outline

Motivation

- 2 Towards More Accurate Models
- 3 Algorithms
- 4 Experiments

5 Discussion

- Generalized additive models are accurate and intelligible
- Tree has low bias but high variance
- Bagging reduces variance and makes tree-based method stand out
- Bagged shallow trees with gradient boosting are most accurate

- Feature selection
- Scalability
- Statistical interaction detection

Questions?

-≣->

Image: A matched block of the second seco

2