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Motivation

Simple Model

Linear regression, logistic regression

Regression: y = β0 + β1x1 + ...+ βnxn

Classification: logit(y) = β0 + β1x1 + ...+ βnxn

Linear Regression

Intelligible but usually less accurate
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Motivation

Complex Model

Random forest, SVMs with RBF kernel, etc.

y = f (x1, ..., xn)

Random Forest

Unintelligible but usually more accurate

Yin Lou (Cornell University) Intelligible Models Aug. 13, 2012 3 / 31



Motivation

Complex Model

Random forest, SVMs with RBF kernel, etc.

y = f (x1, ..., xn)

Random Forest

Unintelligible but usually more accurate

Yin Lou (Cornell University) Intelligible Models Aug. 13, 2012 3 / 31



Motivation

The tradeoff
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Intelligibility is important

Medical applications

Domains where we want scientific understanding

Efficient model engineering

Impact of features in a ranker
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Generalized Additive Models

Developed by Hastie and Tibshirani

Regression: y = f1(x1) + ...+ fn(xn)

Classification: logit(y) = f1(x1) + ...+ fn(xn)

Each feature is “shaped” by shape function fi

Intelligible and accurate

T. Hastie and R. Tibshirani.
Generalized additive models.
Chapman & Hall/CRC, 1990.
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Example

y = x1 + x22 +
√
x3 + log x4 + ex5 + 2 sin x6 + ε
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Figure: Shape Functions for Synthetic Dataset.
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Model Space

Model Form Intelligibility Accuracy

Linear Model y = β0 + β1x1 + ...+ βnxn +++ +
Generalized Linear Model g(y) = β0 + β1x1 + ...+ βnxn +++ +

Additive Model y = f1(x1) + ...+ fn(xn) ++ ++
Generalized Additive Model g(y) = f1(x1) + ...+ fn(xn) ++ ++

Full Complexity Model y = f (x1, ..., xn) + +++

Table: From Linear to Additive Models.
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Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Shape Functions

Splines (SP)

Single Tree (TR)

Bagged Trees (bagTR)

Boosted Trees (bstTR)

Boosted Bagged Trees (bbTR)

Learning Methods

Penalized Least Squares (P-LS/P-IRLS)

Backfitting (BF)

Gradient Boosting (BST)

Yin Lou (Cornell University) Intelligible Models Aug. 13, 2012 11 / 31



Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Shape Functions

Splines (SP)

Single Tree (TR)

Bagged Trees (bagTR)

Boosted Trees (bstTR)

Boosted Bagged Trees (bbTR)

Learning Methods

Penalized Least Squares (P-LS/P-IRLS)

Backfitting (BF)

Gradient Boosting (BST)

Yin Lou (Cornell University) Intelligible Models Aug. 13, 2012 11 / 31



Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Shape Function: Splines (SP)

fi (xi ) =
∑d

k=1 βkbk(xi )
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Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Shape Function: Single Tree (TR)

fi (xi ) = RegressionTree(xi , response)
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Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Shape Function: Bagged Trees (bagTR)

fi (xi ) = 1
B

∑B
j=1 RegressionTree(xi , bootstrap sample j)

1
B ( + ... + )
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Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Shape Function: Boosted Trees (bstTR)

fi (xi ) =
∑B

j=1 RegressionTree(xi , residualj)

+ ... +
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Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Shape Function: Boosted Bagged Trees (bbTR)

fi (xi ) =
∑B

j=1 BaggedRegressionTree(xi , residualj)
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Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Learning Method: Penalized Least Squares (P-LS/P-IRLS)

Works only on Splines (fi (xi ) =
∑d

k=1 βkbk(xi ))

Converts the optimization problem to fitting linear regression/logistic
regression with different basis

S. Wood.
Generalized additive models: an introduction with R.
CRC Press, 2006.

Yin Lou (Cornell University) Intelligible Models Aug. 13, 2012 17 / 31



Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Learning Method: Backfitting (BF)

1: fj ← 0
2: for m = 1 to M do
3: for j = 1 to n do
4: R ← {xij , yi −

∑
k 6=j fk}N1

5: Learn shaping function S : xj → y using R as training dataset
6: fj ← S
7: end for
8: end for

T. Hastie and R. Tibshirani.
Generalized additive models.
Chapman & Hall/CRC, 1990.
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Fitting GAMs

g(y) = f1(x1) + ...+ fn(xn)

Learning Method: Gradient Boosting (BST)

1: fj ← 0
2: for m = 1 to M do
3: for j = 1 to n do
4: R ← {xij , yi −

∑
k fk}N1

5: Learn shaping function S : xj → y using R as training dataset
6: fj ← fj + S
7: end for
8: end for

J. Friedman.
Greedy function approximation: a gradient boosting machine.
Annals of Statistics, 29:1189–1232, 2001.
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Contributions

First large-scale study that uses trees as shape function for GAMs

Novel methods for using trees as shape functions

Largest empirical study of fitting GAMs
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Datasets

Dataset Size Attributes %Pos

R
eg

re
ss

io
n

Concrete 1030 9 -
Wine 4898 12 -
Delta 7192 6 -

CompAct 8192 22 -
Music 50000 90 -

Synthetic 10000 6 -

C
la

ss
ifi

ca
ti

on

Spambase 4601 58 39.40
Insurance 9823 86 5.97

Magic 19020 11 64.84
Letter 20000 17 49.70
Adult 46033 9/43 16.62

Physics 50000 79 49.72
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Methods

Shape Least Gradient
Backfitting

Function Squares Boosting

Splines P-LS/P-IRLS BST-SP BF-SP

Single Tree N/A BST-TRx BF-TR

Bagged Trees N/A BST-bagTRx BF-bagTR

Boosted Trees N/A BST-TRx BF-bstTRx

Boosted
N/A BST-bagTRx BF-bbTRx

Bagged Trees

Table: Notation for learning methods and shape functions.

9 different methods

5-fold cross validation for each method
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Results

Model Regression Classification Mean

Linear/Logistic

1.68 1.22 1.45

P-LS/P-IRLS

1.00 1.00 1.00

BST-SP

1.04 1.00 1.02

BF-SP

1.00 1.00 1.00

BST-bagTR2

0.96 0.96 0.96

BST-bagTR3

0.97 0.95 0.96

BST-bagTR4

0.99 0.95 0.97

BST-bagTRX

0.95 0.94 0.95

Random Forest

0.88 0.80 0.84

Observations

Two accuracy gaps: shaping and interactions

Tree-base shaping methods are more accurate than spline-based methods
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Bias Variance Decomposition

Expected Loss = (bias)2 + variance + noise
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Figure: Bias-variance analysis.
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Learned Shaped Function: Splines vs. Trees

Blast Furnace Slag Fly Ash Superplasticizer Coarse Aggregate Fine Aggregate
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Figure: Shapes of features for the “Concrete” dataset produced by P-LS (top)
and BST-bagTR3 (bottom).
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Conclusion

Generalized additive models are accurate and intelligible

Tree has low bias but high variance

Bagging reduces variance and makes tree-based method stand out

Bagged shallow trees with gradient boosting are most accurate
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Future Work

Feature selection

Scalability

Statistical interaction detection
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Thank You

Questions?
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