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ABSTRACT
Complex models for regression and classification have high accu-
racy, but are unfortunately no longer interpretable by users. We
study the performance of generalized additive models (GAMs),
which combine single-feature models called shape functions through
a linear function. Since the shape functions can be arbitrarily com-
plex, GAMs are more accurate than simple linear models. But since
they do not contain any interactions between features, they can be
easily interpreted by users.

We present the first large-scale empirical comparison of existing
methods for learning GAMs. Our study includes existing spline and
tree-based methods for shape functions and penalized least squares,
gradient boosting, and backfitting for learning GAMs. We also
present a new method based on tree ensembles with an adaptive
number of leaves that consistently outperforms previous work. We
complement our experimental results with a bias-variance analy-
sis that explains how different shape models influence the addi-
tive model. Our experiments show that shallow bagged trees with
gradient boosting distinguish itself as the best method on low- to
medium-dimensional datasets.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Learning—Induction

Keywords
intelligible models, classification, regression

1. INTRODUCTION
Everything should be made as simple as possible, but not simpler.

— Albert Einstein.

Classification and regression are two of the most important data
mining tasks. Currently, the most accurate methods on many datasets
are complex models such as boosted trees, SVMs, or deep neural
nets. However, in many applications what is learned is just as im-
portant as the accuracy of the predictions. Unfortunately, the high
accuracy of complex models comes at the expense of interpretabil-
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Figure 1: Shape Functions for Synthetic Dataset in Example 1.

ity; e.g., even the contribution of individual features to the predic-
tions of a complex model are difficult to understand.

The goal of this work is to construct accurate models that are in-
terpretable. By interpretability we mean that users can understand
the contribution of individual features in the model; e.g., we want
models that can quantify the impact of each predictor. This desider-
ata permits arbitrary complex relationships between individual fea-
tures and the target, but excludes models with complex interactions
between features. Thus in this paper we fit models of the form:

g(y) = f1(x1) + ...+ fn(xn), (1)

which are known as generalized additive models in the literature [15,
22]. The function g(·) is called the link function and we call the
fis shape functions. If the link function is the identity, Equation 1
describes an additive model (e.g., a regression model); if the link
function is the logistic function, Equation 1 describes a generalized
additive model (e.g., a classification model).

EXAMPLE 1. Assume we are given a dataset with 10,000 points
generated from the model y = x1 + x22 +

√
x3 + log(x4) +

exp(x5) + 2 sin(x6) + ε, where ε ∼ N (0, 1). After fitting an
additive model to the data of the form shown in Equation 1, we
can visualize the contribution of xis as shown in Figure 1: Be-
cause predictions are a linear function of the fi(xi), scatterplots
of fi(xi) on the y-axis vs. xi on the x-axis allow us to visualize the
shape function that relates the fi(xi) to the xi, thus we can easily
understand the contribution of xi to the prediction.

Because the data in Example 1 was drawn from a model with no
interactions between features, a model of the form in Equation 1 is
able to fit the data perfectly (modulo noise). However, data are not
always so simple in practice. As a second example, consider a real
dataset where there may be interactions between features.



Model Form Intelligibility Accuracy
Linear Model y = β0 + β1x1 + ...+ βnxn +++ +

Generalized Linear Model g(y) = β0 + β1x1 + ...+ βnxn +++ +
Additive Model y = f1(x1) + ...+ fn(xn) ++ ++

Generalized Additive Model g(y) = f1(x1) + ...+ fn(xn) ++ ++
Full Complexity Model y = f(x1, ..., xn) + +++

Table 1: From Linear to Additive Models.
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Figure 2: Shape Functions for Concrete Dataset in Example 2.

EXAMPLE 2. The “Concrete” dataset relates the compressive
strength of concrete to its age and ingredients. The dataset contains
1030 points with eight numerical features. We again fit an additive
model of the form in Equation 1. Figure 2 shows scatterplots of
the shape functions learned for three of the eight features. As we
can see from the figure, the compressibility of concrete depends
nearly linearly on the Cement feature, but it is a complex non-linear
function of the Water and Age features; we say that the model has
shaped these features. A linear model without the ability to shape
features would have worse fit because it cannot capture these non-
linearities. Moreover, an attempt to interpret the contribution of
features by examining the slopes of a simple linear model would
be misleading; the additive model yields much better fit to the data
while still remaining intelligible.1

As we saw in the examples, additive models explicitly decom-
pose a complex function into one-dimensional components, its shape
functions. Note, however, that the shape functions themselves may
be non-linear: Each feature xi can have a complex non-linear shape
fi(xi), and thus the accuracy of additive models can be signif-
icantly higher than the accuracy of simple linear models. Table
1 summarizes the differences between models of different com-
plexity that we consider in this paper. Linear models, and gen-
eralized linear models (GLMs) are the most intelligible, but of-
ten the least accurate. Additive models, and generalized additive
models (GAMs) are more accurate than GLMs on many data sets
because they capture non-linear relationships between (individual)
features and the response, but retain much of the intelligibility of
linear models. Full complexity models such as ensembles of trees
are more accurate on many datasets because they model both non-
linearity and interaction, but are so complex that it is nearly impos-
sible to interpret them.

In this paper we present the results of (to the best of our knowl-
edge) the largest experimental study of GAMs. We consider shape
functions based on splines [14, 22] and boosted stumps [13], as
well as novel shape functions based on bagged and boosted ensem-
bles of trees that choose the number of leaves adaptively. We exper-
iment with (iteratively re-weighted) least squares, gradient boost-
ing, and backfitting to both iteratively refine the shape functions
and construct the linear model of the shaped features. We apply
these methods to six classification and six regression tasks. For
comparison, we fit simple linear models as a baseline. We also fit

1See Section 4 for the fit of different models to this dataset.

Model Regression Classification Mean
Linear/Logistic 1.68 1.22 1.45
P-LS/P-IRLS 1.00 1.00 1.00

BST-SP 1.03 1.00 1.02
BF-SP 1.00 1.00 1.00

BST-bagTR2 0.96 0.96 0.96
BST-bagTR3 0.97 0.94 0.96
BST-bagTR4 0.99 0.95 0.97
BST-bagTRX 0.95 0.94 0.95

Random Forest 0.88 0.80 0.84

Table 2: Preview of Empirical Results.

unrestricted ensembles of trees as full complexity models to get an
idea of what accuracy is achievable.

Table 2 summarizes the key findings of our study. Entries in the
table are the average accuracies on the regression and classification
datasets, normalized by the accuracy of Penalized (Iteratively Re-
weighted) Least Squares with Splines (P-LS/P-IRLS). As expected,
the accuracy of GAMs falls between that of linear/logistic regres-
sion without feature shaping and full-complexity models such as
random forests. However, surprisingly, the best GAM models have
accuracy much closer to the full-complexity models than to the lin-
ear models. Our results show that bagged trees with 2-4 leaves as
shape functions in combination with gradient boosting as learning
method (Methods BST-bag-TR2 to BST-bag-TR4) outperform all
other methods on most datasets. Our novel method of adaptively
selecting the right number of leaves (Method BST-bagTRX) is al-
most always even better, and thus we recommend it as the method
of choice. On average, this method reduces loss by about 5% over
previous GAM models, a significant improvement in practice.

The rest of the paper is structured as follows. Section 2 presents
algorithms for fitting generalized additive models with various shape
functions and learning methods. Section 3 describes our experi-
mental setup, Section 4 presents the results and their interpretation,
followed by a discussion in Section 5 and an overview of related
work in Section 6. We conclude in Section 7.

2. METHODOLOGY
Let D = {(xi, yi)}N1 denote a training dataset of size N , where

xi = (xi1, ..., xin) is a feature vector with n features and yi is the
target. In this paper, we consider both regression problems where
yi ∈ R and binary classification problems where yi ∈ {1,−1}.
Given a model F , let F (xi) denote the prediction of the model for
data point xi. Our goal in both classification and regression is to
minimize the expected value of some loss function L(y, F (x)).

We are working with generalized additive models of the form in
Equation 1. To train such models we have to select (i) the shape
functions for individual features and (ii) the learning method used
to train the overall model. We discuss these two choices next.



2.1 Shape Functions
In our study we consider two classes of shape functions: regres-

sion splines and trees or ensembles of trees. Note that all shape
functions relate a single attribute to the target.

Regression Splines. We consider regression splines of degree d

of the form y =
d∑

k=1

βkbk(x).

Trees and Ensembles of Trees. We also use binary trees and
ensembles of binary trees with largest variance reduction as split
selection method. We control tree complexity by either fixing the
number of leaves or by disallowing leaves that have fewer than an
α-fraction of the number of training examples.

We consider the following ensemble variants:

• Single Tree. We use a single regression tree as a shape func-
tion.

• Bagged Trees. We use the well-known technique of bagging
to reducing variance [6].

• Boosted Trees. We use gradient boosting, where each suc-
cessive tree tries to predict the overall residual from all pre-
ceding trees [12].

• Boosted Bagged Trees. We use a bagged ensemble in each
step of stochastic gradient boosting [13], resulting in a boosted
ensemble of bagged trees.

2.2 Generalized Additive Models
We consider three different methods for fitting additive models in

our study: Least squares fitting for learning regression spline shape
functions, and gradient boosting and backfitting for learning tree
and tree ensemble shape functions. We review them here briefly
for completeness although we would like to emphasize that these
methods are not a contribution of this paper.

2.2.1 Least Squares
Fitting a spline reduces to learning the weights βk(x) for the ba-

sis functions bk(x). Learning the weights can be reduced to fitting
a linear model y = Xβ, where Xi = [b1(xi1), ..., bk(xin)]; the
coefficients of the linear model can be computed exactly using the
least squares method [22]. To control smoothness, there is a “wig-
gliness” penalty: we minimize ‖y −Xβ‖ + λ

∑
i

∫
[f ′′i (xi)]

2dx
with the smoothing parameter λ. Large values of λ lead to a straight
line for fi while low values of λ allow the spline to fit closely to
the data. We use thin plate regression splines from the R pack-
age “mgcv” [22] that automatically selects the best values for the
parameters of the splines [21]. We call this method penalized least-
squares (P-LS) in our experiments.

The fitting of an additive logistic regression model using splines
is similarly reduced to fitting a logistic regression with a different
basis, which can be solved using penalized-iteratively reweighted
least squares (P-IRLS) [22].

2.2.2 Gradient Boosting
We use standard gradient boosting [12, 13] with one difference:

Since we want to learn shape functions for all features, in each
iteration of boosting we cycle sequentially through all features. For
completeness, we include pseudo-code in Algorithms 1 and 2. In
Algorithm 1, we first set all shape functions to zero (Line 1). Then
we loop over M iterations (Line 2) and over all features (Line 3)
and then calculate the residuals (Line 4). We then learn then one-
dimensional function to predict the residuals (Line 5) and add it to
the shape function (Line 6).

2.2.3 Backfitting
A popular algorithm for learning additive models is the backfit-

ting algorithm [15]. The algorithm starts with an initial guess of all
shape functions (such as setting them all to zero). The first shape
function f1 is then learned using the training set with the goal to
predict y. Then we learn the second shape function f2 on the resid-
uals y−f1(x1), i.e., using training set {(xi2, y−f1(xi1))}N1 . The
third shape function is trained on the residuals y−f1(x1)−f2(x2),
and so on. After we have trained n shape functions, the first shape
function is discarded and retrained on the residuals of the other
n−1 shape functions. Note that backfitting is a form of the “Gauss-
Seidel” algorithm and its convergence is usually guaranteed [15].
Its pseudocode looks identical to Algorithm 1 except that Line 6 is
replaced by fj ← S.

To fit an additive logistic regression model, we can use a general-
ized version of the backfitting algorithm called the “Local Scoring
Algorithm” [15], which is a general method for fitting generalized
additive models. We form the response

ỹi = F (xi) +
1(yi = 1)− p(xi)

p(xi)(1− p(xi))
,

where p(xi) = 1
1+exp(−F (xi))

. We then apply the weighted back-
fitting algorithm to the response ỹi with observation weights p(xi)
(1− p(xi)) [15].

Algorithm 1 Gradient Boosting for Regression
1: fj ← 0
2: for m = 1 to M do
3: for j = 1 to n do
4: R← {xij , yi −

∑
k fk}

N
1

5: Learn shaping function S : xj → y using R as training
dataset

6: fj ← fj + S

Algorithm 2 Gradient Boosting for Classification
1: fj ← 0
2: for m = 1 to M do
3: for j = 1 to n do
4: ỹi ← 2yi

1+exp(2yiF (xi))
, i = 1, ..., N

5: Learn {Rkm}K1 ← a tree with K leaf nodes using
{(xij , ỹi)}N1 as training dataset

6: γkm =

∑
xij∈Rkm

ỹi∑
xij∈Rkm

|ỹi|(2−|ỹi|)
, k = 1, ...,K

7: fj ← fj +
∑K

k=1 γkm1(xij ∈ Rkm)

3. EXPERIMENTAL SETUP
In this section we describe the experimental design.

3.1 Datasets
We selected datasets of low-to-medium dimensionality with at

least 1000 points. Table 3 summarizes the characteristics of the 12
datasets. One of the regression datasets is a synthetic problem used
to illustrate feature shaping (but we do not use the results on this
dataset when comparing the accuracy of the methods).

The “Concrete,” “Wine,” and “Music” regression datasets are
from the UCI repository [1]; “Delta” is the task of controlling the
ailerons of a F16 aircraft [2]; “CompAct” is a regression dataset
from the Delve repository that describes the state of multiuser com-
puters [3]. The synthetic dataset was described in Example 1.



Dataset Size Attributes %Pos
Concrete 1030 9 -

Wine 4898 12 -
Delta 7192 6 -

CompAct 8192 22 -
Music 50000 90 -

Synthetic 10000 6 -
Spambase 4601 58 39.40
Insurance 9823 86 5.97

Magic 19020 11 64.84
Letter 20000 17 49.70
Adult 46033 9/43 16.62

Physics 50000 79 49.72

Table 3: Datasets.

Shape Least Gradient BackfittingFunction Squares Boosting
Splines P-LS/P-IRLS BST-SP BF-SP

Single Tree N/A BST-TRx BF-TR
Bagged Trees N/A BST-bagTRx BF-bagTR
Boosted Trees N/A BST-TRx BF-bstTRx

Boosted N/A BST-bagTRx BF-bbTRxBagged Trees

Table 4: Notation for learning methods and shape functions.

The “Spambase,” “Insurance,” “Magic,” “Letter” and “Adult”
classification datasets are from the UCI repository. “Adult” con-
tains nominal attributes that we transformed to boolean attributes
(one boolean per value). “Letter” has been converted to a binary
problem by using A-M as positives and the rest as negatives. The
“Physics” dataset is from the KDD Cup 2004 [4].

3.2 Methods
Recall from Section 2 that we have two different types of shape

functions and three different methods of learning generalized addi-
tive models; see Table 4 for an overview of these methods and their
names. While penalized least squares for regression (P-LS) and
penalized iteratively re-weighted least squares for classification (P-
IRLS) only work with splines, gradient boosting and backfitting
can be applied to both splines and ensembles of trees.

In gradient boosting, we vary the number of leaves in the bagged
or boosted trees: 2, 3, 4, 8, 12 to 16 (indicated by appending this
number to the method names). Trained models will contain M
such trees for each shape function after M iterations. In backfit-
ting, we re-build the shape function for each feature from scratch
in each round, so the shape function needs to have enough expres-
sive power to capture a complex function. Thus we control the
complexity of the tree not by the number of leaves, but by adap-
tively choosing a parameter α that stops splitting nodes smaller
than an α fraction of the size of the training data; we vary α ∈
{0.00125, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}.
A summary of the combinations of shape functions and learning
methods can be found in Table 4.

Beyond the parameters that we already discussed, P-LS and P-
IRLS have a parameter λ, which is estimated using generalized
cross validation as discussed in Section 2. We do not fix the number
of iterations for gradient boosting and backfitting but instead run
these methods until convergence as follows: We divide the training
set into five partitions. We then set aside one of the partitions as

a validation set, train the model on the remaining four partitions,
and use the validation set to check for convergence. We repeat this
process five times and then compute M , the average number of
iterations until convergence across the five iterations. We then re-
train the model using the whole training set for M iterations. We
follow a similar procedure for backfitting where we pick the best α
for each partition and average them to train the final model using
the whole training dataset.

3.3 Metrics
For regression problems, we report the root mean squared error

(RMSE) for linear regression (no feature shaping), additive models
with shaping with splines or trees (penalized least squares, gradient
boosting and backfitting), and unrestricted full-complexity models
(random forest regression trees and Additive Groves [5, 19]).

For classification problems, we report the error rates for logis-
tic regression, generalized additive models with splines or trees
(penalized iteratively re-weighted least squares, gradient boosting
and backfitting), and full-complexity unrestricted models (random
forests [8]).2

In all experiments we use 100 trees for bagging. We do not no-
tice significant improvements by using more iterations of bagging.
For Additive Groves, the number of trees is automatically selected
by the algorithm on the validation set. For P-LS and P-IRLS, we
use an R package called “mgcv” [22]. We perform 5-fold cross
validation for all experiments.3

4. RESULTS
The regression and classification results are presented in Table 5

and Table 6, respectively. We report means and standard deviations
on the 5-fold cross validation test-sets. To facilitate comparison
across multiple datasets, we compute normalized scores that aver-
age the performance of each method across the datasets, normal-
ized by the accuracy of P-LS/P-IRLS on each dataset.

Table 5 and Table 6 are laid out as follows: The top of each
table shows results for linear/logistic regression (no feature shap-
ing) and the traditional spline-based GAM models P-LS/P-IRLS,
BST-SP, and BF-SP. The middle of the tables present results for
new methods that do feature shaping with trees instead of splines
such as boosted size-limited trees (e.g., BST-TR3), boosted-bagged
size-limited trees (e.g., BST-bagTR3), backfitting of boosted trees
(e.g., BF-bstTR3), and backfitting of boosted-bagged trees (e.g.,
BF-bbTR3). The bottom of each table presents results for unre-
stricted full-complexity models such as random forests and addi-
tive groves. Our goal is to devise more powerful GAM models that
are as close in accuracy as possible to the full-complexity models,
while preserving the intelligibility of linear models.

Several clear patterns emerge in both tables.
(1) There is a large gap in accuracy between linear methods that

do not do feature shaping (linear or logistic regression) and most
methods that perform feature shaping. For example, on average the
spline-based P-LS GAM model has 60% lower normalized RMSE
than vanilla linear regression. Similarly, on average, P-IRLS is
about 20% more accurate than logistic regression.

(2) The new tree-based shaping methods are more accurate than
the spline-based methods as long as model complexity (and vari-
ance — see Section 5.1) is controlled. In both tables, the most ac-
curate tree-based GAM models use boosted-bagged trees that are
size-limited to 2-4 leaves.

2Random forests is a very competitive full complexity model [10].
3We use 5-fold instead of 10-fold cross validation because some of
the experiments are very expensive.
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Figure 3: Training curves for gradient boosting and backfitting. Figure (a), (b) and (c) show the behavior of BST-bagTR2, BST-
bagTR16 and BF-bagTR on the “Concrete” regression problem, respectively. Figure (d), (e) and (f) illustrate behavior of BST-
bagTR2, BST-bagTR16 and BF-bagTR on the “Spambase” classification, respectively.
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Figure 4: Shapes of features for the “Concrete” dataset produced by P-LS (top) and BST-bagTR3 (bottom).

(3) Unrestricted full-complexity models such as random forests
and additive groves are more accurate than any of the GAM mod-
els because they are able to model feature interactions, which linear
models of shaped features cannot capture. Our goal is to push the
accuracy of linear shaped models as close as possible to the accu-
racy of these unrestricted full-complexity models.

Looking more closely at the results for models that shape fea-
tures with trees, the most accurate model on average is BST-bagTR2
for regression, and BST-bagTR3 for classification. Models that use
more leaves are consistently less accurate than comparable models
with 2-4 leaves. It is critical to control tree complexity when boost-
ing trees for feature shaping. Moreover, the most accurate meth-
ods used bagging inside of boosting to reduce variance. (More on
model variance in Section 5.1.) Finally, on the regression problems,
methods based on gradient boosting of residuals slightly edged
out the methods based on backfitting, though the difference is not
statistically significant. On the classification problems, however,
where backfitting is performed on pseudo-residuals, there were sta-
bility problems that caused some runs to diverge or fail to terminate.
Overall, tree-based shaping methods based on gradient-boosting
appear to be preferable to tree-based methods based on backfitting
because the gradient boosting methods may be a little more accu-
rate, are often faster, and on some problems are more robust.

Although tree-based feature shaping yields significant improve-
ments in accuracy for GAMs, on most problems they are not able
to close the gap with unrestricted full-complexity models such as
random forests. For example, all linear methods have much worse
RMSE on the wine regression problem than the unrestricted ran-
dom forest model. On problems where feature interaction is impor-
tant, linear models without interaction terms must be less accurate.

4.1 Model Selection
There is a risk when comparing many parameterizations of a new

method against a small number of baseline methods, that the new
method will appear to be better because selecting the best model
on the test set leads to overfitting to the test sets. To avoid this, the
table includes results for a method called “BST-bagTRX” that uses
the cross-validation validation sets (not the CV test sets) to pick
the best parameters from the BST-bagTRxmodels for each dataset.
This method is not biased by looking at results on test sets, is fully
automatic and thus does not depend on human judgement, and is
able to select different parameters for each problem. The results
in Table 5 and Table 6 suggest that BST-bagTRX is more accu-
rate than any single fixed parameterization. Looking at the models
selected by BST-bagTRX, we see that BST-bagTRX usually picks
models with 2, 3 or 4 leaves, and that the model it selects often
is the one with the best test-set performance. On both the regres-
sion and classification datasets, BF-bagTRX is significantly more
accurate than any of the models that use splines for feature shaping.

5. DISCUSSION
5.1 Bias-Variance Analysis

The results in Tables 5 and 6 show that adding feature shaping
to linear models significantly improves accuracy on problems of
small-medium dimensionality, and feature shaping with tree-based
models significantly improves accuracy compared to feature shap-
ing with splines. But why are tree-based methods more accurate
for feature shaping than spline-based methods? In this section we
show that splines tend to underfit, i.e., have very low variance at
the expense of higher bias, but tree-based shaping models can have
both low bias and low variance if tree complexity is controlled.

To show why spline models do not perform as well as tree mod-
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Figure 5: Shapes of features for the “Spambase” dataset produced by P-IRLS (top) and BST-bagTR3 (bottom).

els, and why controlling complexity is so critical with trees, we
perform a bias-variance analysis on the regression datasets.4 As in
previous experiments, we randomly select 20% of the points as test
sets. We then draw L samples of size M = 0.64N points from the
remaining points to keep the training sample size the same as with
5-fold cross validation in previous experiments. We use L = 10
trials. The bias-variance decomposition is calculated as follows:

Expected Loss = (bias)2 + variance+ noise

Define the average prediction onL samples for each point (xi, yi)

in test set as ȳi = 1
L

∑L
l=1 ŷ

l
i, where ŷli is the predicted value forxi

using sample l. The squared bias (bias)2 = 1
N′

∑N′

i=1[ȳi − yi]2,
where yi is the known target in the test set and N ′ = 0.2N is
the size of test set. The variance is calculated as variance =
1
N′

∑N′

i=1
1
L

∑L
l=1[ŷli − ȳi]2.

The bias-variance results for the six regression datasets are shown
in Figure 6. We can see that methods based on regression splines
have very low variance, but sometimes at the expense of increased
bias, while the best tree-based methods consistently have lower bias
combined with low-enough variance to yield better overall RMSE.
If tree complexity is not carefully controlled, however, variance
explodes and hurts total RMSE. As expected, adding bagging in-
side boosting further reduces variance, making tree-based feature
shaping methods based on gradient-boosting of residuals with in-
ternal bagging the most accurate method overall. (We do not expect
bagging would help regression splines because the variance of re-
gression splines is so low to begin with.) But even bagging will
not prevent overfitting if the trees are too complex. Figure 3 shows
training curves on the train, validation and test sets for gradient
boosting with bagging and backfitting with bagging on a regres-
sion and classification problem. BST-bagTR2 is more resistant to
overfitting than BST-bagTR16 which easily overfits.

The training curves for backfitting are not monotonic, and have
distinct peaks on the classification problem. Each peak corresponds
to a new backfitting iteration when pseudo residuals are updated.
In our experience, backfitting on classification problems is consis-
tently inferior to other methods, in part because it is harder for the
local scoring algorithm to find a “good” set of pseudo residuals,
which ultimately leads to instability and poor fit. Interestingly, in

4We do not perform bias-variance analysis on the classification
problems because the bias-variance decomposition for classifica-
tion is not as well defined.

the bias-variance analysis of backfitting, both bias and variance of-
ten increase as the trees become larger, and the worst performing
models on the five non-synthetic datasets are backfit models with
large trees. We suspect backfitting can get stuck in inferior local
minima when shaping with larger trees, hurting both bias and vari-
ance, which may explain the instability and convergence problems
observed with backfitting on some classification problems.

5.2 Underfitting, Intelligibility, and Fidelity
One of the main reasons to use GAMs (linear models of non-

linearly shaped features) is intelligibility. Figure 1 in Section 1
showed shape models for features in the synthetic dataset. In this
section we show shape models learned for features from real re-
gression and classification problems.

Figure 4 shows feature shape plots for the “Concrete” regres-
sion problem. Figure 5 show shape plots for the “Spambase” clasi-
fication problem. In each figure, the top row of plots are from
the P-LS spline method, and the bottom row of plots are from
BST-bagTR3. Confidence intervals for the least squres method can
be computed analytically. Confidence intervals for BST-bagTR3
are generated by running BST-bagTR3 multiple times on bootstrap
samples. As expected, the spline-based approach produces smooth
plots. The cost of this smoothness, however, is poorer fit that results
in higher RMSE or lower accuracy. Moreover, not all phenomena
are smooth. Freezing and boiling occur at distinct temperatures, the
onset of instability occurs abruptly as fluid flow increases relative
to Reynolds Number, and many human decision making processes
such as loans, admission to school, or administering medical pro-
cedures use discrete thresholds.

On the “Concrete” dataset, all features in Figure 4 are clearly
non-linear. On this dataset P-LS is sacrificing accuracy for smooth-
ness — the tree-based fitting methods have significantly lower RMSE
than P-LS. The smoother P-LS models may appear more appealing
and easier to interpret, but there is structure in the BST-bagTR3
models that is less apparent or missing in the P-LS plots that might
be informative or important. As just one example, the P-LS and
BST-bagTR3 models do not agree on the slopes of parts of the mod-
els for the Coarse and Fine Aggregate features.

On the “Spambase” dataset, the shape functions are nonlinear
with sharp turns. Again, the BST-bagTR3 model is significantly
more accurate than P-IRLS. Interestingly, the spline models for
features Freq_hp, Freq_!, Freq_remove and Freq_$ show strong
positive or negative slope in the right-hand side of the shape plots



Model Concrete Wine Delta CompAct Music Synthetic Mean
Linear Regression 10.43±0.49 7.55±0.13 5.68±0.14 9.72±0.55 9.61±0.09 1.01±0.00 1.68±0.98

P-LS 5.67±0.41 7.25±0.21 5.67±0.16 2.81±0.13 9.27±0.07 0.04±0.00 1.00±0.00
BST-SP 5.79±0.37 7.27±0.18 5.68±0.18 3.19±0.37 9.29±0.08 0.04±0.00 1.03±0.06
BF-SP 5.66±0.42 7.25±0.21 5.67±0.17 2.77±0.06 9.27±0.08 0.04±0.00 1.00±0.01

BST-TR2 5.19±0.39 7.17±0.10 5.75±0.18 2.68±0.33 9.55±0.08 0.11±0.00 0.98±0.08
BST-TR3 5.13±0.37 7.20±0.16 5.82±0.19 3.18±0.45 9.77±0.07 0.05±0.01 1.02±0.11
BST-TR4 5.24±0.39 7.24±0.15 5.83±0.21 3.70±0.52 9.88±0.09 0.07±0.01 1.07±0.15
BST-TR8 5.57±0.61 7.35±0.17 5.97±0.22 5.07±0.54 10.03±0.10 0.19±0.02 1.19±0.33

BST-TR12 5.92±0.63 7.39±0.13 6.03±0.19 6.59±0.71 10.15±0.07 0.26±0.02 1.31±0.54
BST-TR16 6.08±0.37 7.41±0.23 6.09±0.19 7.07±1.01 10.23±0.08 0.33±0.03 1.36±0.60

BST-bagTR2 5.06±0.39 7.05±0.11 5.67±0.20 2.59±0.34 9.42±0.08 0.07±0.00 0.96±0.08
BST-bagTR3 4.93±0.41 7.01±0.10 5.67±0.20 2.82±0.35 9.45±0.07 0.03±0.00 0.97±0.09
BST-bagTR4 4.99±0.43 7.01±0.12 5.70±0.20 2.95±0.35 9.46±0.08 0.03±0.00 0.99±0.09
BST-bagTR8 5.04±0.43 7.04±0.13 5.79±0.18 3.40±0.34 9.48±0.08 0.06±0.00 1.02±0.13
BST-bagTR12 5.11±0.44 7.07±0.15 5.85±0.18 3.76±0.33 9.50±0.07 0.07±0.00 1.05±0.16
BST-bagTR16 5.18±0.49 7.10±0.18 5.91±0.20 4.16±0.39 9.52±0.09 0.09±0.00 1.09±0.21
BST-bagTRX 4.89±0.37 7.00±0.10 5.65±0.20 2.59±0.34 9.42±0.08 0.03±0.00 0.95±0.09

BF-TR 5.80±0.60 7.19±0.09 5.67±0.21 2.81±0.25 9.88±0.08 0.06±0.03 1.02±0.07
BF-bagTR 5.10±0.49 7.02±0.13 5.61±0.21 2.69±0.31 9.43±0.07 0.04±0.00 0.97±0.07
BF-bstTR2 5.11±0.37 7.14±0.11 5.73±0.20 2.66±0.35 9.62±0.07 0.13±0.01 0.98±0.08
BF-bstTR3 5.21±0.38 7.29±0.19 5.84±0.21 4.38±0.24 10.77±0.10 0.04±0.01 1.14±0.24
BF-bstTR4 5.49±0.72 7.44±0.20 5.94±0.21 4.97±0.73 11.24±0.07 0.06±0.03 1.21±0.33
BF-bstTR8 6.74±0.76 7.93±0.32 6.08±0.24 9.18±0.77 12.08±0.07 0.04±0.01 1.59±0.87

BF-bstTR12 7.13±0.68 8.10±0.27 6.15±0.24 11.20±0.72 12.31±0.15 0.08±0.03 1.76±1.16
BF-bstTR16 7.22±0.73 8.33±0.35 6.18±0.24 11.41±0.29 12.59±0.10 0.11±0.08 1.79±1.17
BF-bbTR2 5.13±0.41 7.05±0.12 5.66±0.19 2.59±0.37 9.50±0.07 0.12±0.00 0.97±0.08
BF-bbTR3 5.15±0.44 7.07±0.17 5.74±0.20 2.85±0.33 9.80±0.07 0.04±0.00 0.99±0.09
BF-bbTR4 6.20±0.86 7.12±0.22 5.80±0.23 3.01±0.23 9.83±0.08 0.04±0.00 1.05±0.09
BF-bbTR8 6.33±0.46 7.30±0.21 5.95±0.23 3.72±0.84 9.86±0.11 0.04±0.00 1.11±0.16

BF-bbTR12 6.52±0.56 7.52±0.30 6.01±0.20 4.32±0.94 9.89±0.06 0.04±0.00 1.17±0.23
BF-bbTR16 6.37±0.48 7.63±0.26 6.07±0.24 4.85±0.76 9.91±0.07 0.05±0.01 1.21±0.29

Random Forests 4.98±0.44 6.05±0.23 5.34±0.13 2.45±0.09 9.70±0.07 0.55±0.00 0.88±0.06
Additive Groves 4.25±0.47 6.21±0.20 5.35±0.14 2.23±0.15 9.03±0.05 0.02±0.00 0.86±0.10

Table 5: RMSE for regression datasets. Each cell contains the mean RMSE ± one standard deviation. Average normalized score on
five datasets (excludes synthetic) is shown in the last column, where the score is calculated as relative improvement over P-LS.

where data is sparse (albeit with very wide confidence intervals)
while the BST-bagTR3 shape plots appear to be better behaved.

Below each shape plot in Figures 4 and 5 is the weight of each
shape term in the linear model. These weights tell users how im-
portant each term is to the model. Terms can be sorted by weight,
and if necessary terms with low weight can be removed from the
model and the retained features reshaped.

In both figures there is coarse similarity between the feature
shape plots learned by the spline and tree-based methods, but in
many plots the tree-based methods appear to have caught structure
that is missing or more difficult to see in the spline plots. The spline
models may be more appealing to the eye, but they are clearly less
accurate and appear to miss some of details of the shape functions.

5.3 Computational Cost
In our experiments, P-LS and P-IRLS are very fast on small

datasets, but on the larger datasets they are slower than the BST-
TRx. Due to the extra cost of bagging, BST-bagTRx, BF-bagTR
and BF-bbTRx are much slower than P-LS/P-IRLS or BST-TRx.
The slowest method we tested is backfitting, which is expensive be-
cause at each iteration the previous shape functions are discarded
and a new fit for each feature must be learned. Gradient boost-
ing converges faster because in each iteration the algorithm adds a

patch to the existing pool of predictors, thus building on previous
efforts rather than discarding them.

Gradient boosting is easier to parallelize [17] than backfitting
(Gauss-Seidel). The Jacobi method is sometimes used as an alter-
native to Gauss-Seidel because it is easier to parallelize, however,
in our experience, Jacobi-based backfitting converges to subopti-
mal solutions that can be much worse.

5.4 Limitations and Extensions
The experiments in this paper are on datasets of low-to-medium

dimensionality (less than 100 dimensions). Our next step is to scale
the algorithm to datasets with more dimensions (and more training
points). Even linear models lose intelligibility when there are hun-
dreds of terms in the model. To help retain intelligibility in high di-
mensional spaces, we have begun developing an extension to BST-
bagTRX that incorporates feature selection in the feature shaping
process to retain only those features that, after shaping, make the
largest contributions to the model. We do not present results for
feature selection in this paper because of space limitations, and be-
cause it is important to focus first on the foundational issue of what
algorithm(s) train the best models.

In this paper we focus exclusively on shape functions of indi-
vidual features; feature interaction is not allowed. Because of this,
the models will not be able to achieve the same accuracy as unre-



Model Spambase Insurance Magic Letter Adult Physics Mean
Logistic Regression 7.67±1.03 6.11±0.29 20.99±0.46 27.54±0.27 16.04±0.46 29.24±0.36 1.22±0.23

P-IRLS 6.43±0.77 6.11±0.30 14.53±0.41 17.47±0.24 15.00±0.28 29.04±0.49 1.00±0.00
BST-SP 6.24±0.65 6.07±0.31 14.54±0.31 17.61±0.23 15.02±0.25 28.98±0.43 1.00±0.03
BF-SP 6.37±0.29 6.11±0.29 14.58±0.32 17.52±0.17 15.01±0.28 28.98±0.46 1.00±0.03

BST-TR2 5.22±0.77 5.97±0.38 14.63±0.36 17.40±0.22 14.90±0.26 29.58±0.53 0.97±0.08
BST-TR3 5.09±0.79 5.97±0.38 14.54±0.14 17.29±0.25 14.58±0.33 28.81±0.52 0.95±0.08
BST-TR4 5.11±0.70 5.97±0.38 14.60±0.25 17.44±0.26 14.65±0.35 28.72±0.48 0.96±0.08
BST-TR8 5.39±1.06 5.97±0.38 14.64±0.23 17.44±0.27 14.61±0.34 28.77±0.55 0.96±0.08

BST-TR12 5.61±0.76 5.97±0.38 14.57±0.41 17.45±0.24 14.57±0.36 28.63±0.60 0.97±0.08
BST-TR16 5.93±0.96 5.97±0.38 14.83±0.38 17.47±0.23 14.62±0.32 28.63±0.51 0.98±0.05

BST-bagTR2 5.00±0.65 5.97±0.38 14.47±0.20 17.25±0.22 14.95±0.35 29.32±0.67 0.96±0.09
BST-bagTR3 4.89±1.01 5.97±0.38 14.39±0.13 17.22±0.24 14.57±0.29 28.65±0.47 0.94±0.09
BST-bagTR4 4.98±1.07 5.98±0.35 14.40±0.28 17.31±0.23 14.63±0.30 29.05±0.50 0.95±0.09
BST-bagTR8 5.22±1.05 5.99±0.36 14.43±0.33 17.42±0.15 14.68±0.35 28.73±0.64 0.96±0.08
BST-bagTR12 5.48±1.09 6.00±0.36 14.44±0.35 17.45±0.19 14.67±0.39 29.06±0.77 0.97±0.07
BST-bagTR16 5.52±1.01 5.99±0.36 14.45±0.29 17.47±0.23 14.69±0.34 28.77±0.65 0.97±0.07
BST-bagTRX 4.78±0.82 5.95±0.37 14.31±0.21 17.21±0.23 14.58±0.28 28.62±0.49 0.94±0.09

BF-TR 6.41±0.37 6.34±0.27 16.81±0.35 17.36±0.26 14.96±0.28 31.64±0.57 1.05±0.07
BF-bagTR 5.63±0.47 6.34±0.22 15.09±0.48 17.41±0.23 14.95±0.34 29.51±0.46 0.99±0.06
BF-bstTR2 5.39±0.68 6.28±0.18 14.43±0.37 17.44±0.35 14.87±0.21 29.70±0.66 0.98±0.35
BF-bstTR3 6.85±1.48 6.31±0.54 15.11±0.24 17.53±0.18 14.64±0.32 29.90±0.34 1.02±0.06
BF-bstTR4 7.63±0.85 6.40±0.48 15.47±0.26 17.46±0.29 14.66±0.27 29.67±0.80 1.05±0.09
BF-bstTR8 10.20±1.30 6.52±0.54 16.26±0.36 17.47±0.25 14.60±0.36 30.32±0.41 1.13±0.24

BF-bstTR12 12.39±1.04 6.53±0.54 16.95±0.40 17.50±0.25 14.76±0.32 31.08±0.43 1.21±0.35
BF-bstTR16 13.11±1.32 6.55±0.58 17.68±0.56 17.52±0.24 14.79±0.33 31.97±0.37 1.24±0.40
BF-bbTR2 5.48±0.59 6.20±0.26 15.26±0.43 17.86±0.30 14.90±0.31 29.36±0.56 0.99±0.08
BF-bbTR3 5.83±0.76 6.42±0.24 14.64±0.18 17.43±0.34 14.77±0.34 28.64±0.56 0.99±0.06
BF-bbTR4 6.13±0.90 6.48±0.20 14.68±0.24 17.43±0.26 14.74±0.35 28.64±0.50 1.00±0.07
BF-bbTR8 6.48±0.97 6.59±0.26 14.79±0.20 17.51±0.27 14.64±0.33 28.65±0.50 1.01±0.07
BF-bbTR12 7.35±1.24 6.56±0.21 14.90±0.22 17.53±0.18 14.58±0.33 28.88±0.29 1.04±0.10
BF-bbTR16 7.72±1.36 6.56±0.20 15.02±0.40 17.52±0.24 14.58±0.28 29.16±0.38 1.05±0.11

Random Forests 4.48±0.64 5.97±0.41 11.99±0.50 6.23±0.27 14.85±0.25 28.55±0.56 0.80±0.23

Table 6: Error rate for classification datasets. Each cell contains the classification error ± one standard deviation. Averaged
normalized score on all datasets is shown in the last column, where the score is calculated as relative improvement over P-IRLS.

stricted full-complexity models on many datasets. The addition of
a few carefully selected interaction terms would further close this
gap [16]. Because 3-D plots can be visualized, we may be able to
allow pairwise interactions in our models while preserving some of
the intelligibility.

Our empirical results suggest that bagging small trees of only 2-
4 leaves yields the best accuracy. These are very small trees trained
for one feature at a time and thus they divide the number line into 2-
4 subintervals. We could imagine replacing bagged decision trees
with some type of dynamic programming algorithm that directly
works on (possibly smoothed) subintervals of the number line.

6. RELATED WORK
Generalized additive models were introduced by the statistics

community [14, 15, 22] and have been extended to include LASSO
feature selection [18] and to incorporate interaction terms [16].
Binder and Tutz performed a comprehensive comparison of meth-
ods for fitting GAMs with regression splines [7]. They compared
backfitting, boosting, and penalized iteratively re-weighted least
squares on simulated datasets. Our work differs from theirs in that
we examine both regression splines and regression trees, most of
our experiments are with real datasets, we look at both regression
and classification, and we introduce a new method that is more ac-
curate than splines.

Methods have been proposed for fitting GAMs with arbitrary

link functions where the link function also is unknown and must
be fitted. ACE [9] is probably the most well-known method for
fitting these kind of GAMs. We do not evaluate ACE in this work
because learned link functions can be complex, making it difficult
to interpret the feature shape models. We focus on the identity and
logit link functions because these are the link functions appropriate
for regression and classification.

Forman et al. proposed feature shaping for linear SVM classi-
fiers [11]. Their focus is on estimating the posterior probability
P (y = 1|xi = v).

Recently there have been efforts to scale GAMs. [17] uses MapRe-
duce to parallelize gradient boosting and large tree construction.
[20] parallelizes growing regression trees via gradient boosting us-
ing a master-worker paradigm where data are partitioned among
workers. The algorithm carefully orchestrates overlap between com-
munication and computation to achieve good performance.

7. CONCLUSIONS
We present a comprehensive empirical study of algorithms for

fitting generalized additive models (GAMs) with spline and tree-
based shape functions. Our bias-variance analysis shows that spline-
based methods tend to underfit and thus may miss important non-
smooth structure in the shape models. As expected, the bias-variance
analysis also shows that tree-based methods are prone to overfitting
and require careful regularization. We also introduce a new GAM
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Figure 6: Bias-variance analysis for the six regression problems (bias = red at bottom of bars; variance = green at top of bars).

method based on gradient boosting of size-limited bagged trees that
yields significantly more accuracy than previous algorithms on both
regression and classification problems while retaining the intelligi-
bility of GAM models.
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