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ABSTRACT
Generalized additive models (GAMs) are one of the popular meth-
ods of building intelligible models on classification and regression
problems. Fitting the most accurate GAMs is usually done via gradi-
ent boosting with bagged shallow trees. However, such method can
be expensive for large industrial applications. In this work, we aim
to improve the training efficiency of GAM. To this end, we propose
to use subsample aggregating (subagging) in place of bootstrap
aggregating (bagging). Our key observation is that subsamples of
reasonable size (e.g., 60% of the training set) usually overlap. Such
property allows us to explore the computation ordering inside a
subagged ensemble and we present a novel algorithm to speed up
the computation of subagged ensemble with no loss of accuracy.
Our experimental results on public datasets demonstrate that our
proposed method can achieve up to 3.7x speedup over bagged en-
sembles with comparable accuracy. Finally, we demonstrate our
methodology of finding global explanations on a real application at
Alipay. We have developed several strategies from the findings of
those explanations and found those strategies achieved significant
lift on key metrics through online experiments.
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1 INTRODUCTION
In many applications, what is learned is just as important as the
accuracy of predictions. Generalized additive models (GAMs) [11,
22] are one of the popular methods of building intelligible models
on classification and regression problems. Typically, GAMs can be
written as,

д(E[y]) = β0 +
∑
j

fj (x j ), (1)
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where д is the link function and fj is called shape function. For
identifiability, fj ’s are usually centered, i.e., E[fj ] = 0.

Since GAM only has univariate components, users can easily
visualize those one-dimensional additive components. Hence, it is
a completely white-box model and provides global additive expla-
nations. GAM has been demonstrated to be useful and accurate in
many mission-critical applications, such as healthcare [5] and bias
detection in recidivism prediction [19].

One of the major GAM fitting algorithms employs a combination
of bootstrap aggregating (bagging) [3] and gradient boosting [8] as
its optimization method; GAM runs gradient boosting with bagged
shallow trees that cycle one-at-a-time through its components.
Previous research shows that such combination yields the most
accurate model on classification and regression problems [14, 24].
Despite the high predictive performance, such ensemble combina-
tion makes it relatively expensive to train GAMs, especially for
industry-scale applications.

Hence in this work we aim to improve the training efficiency
of GAM. We propose to use subsample aggregating (subagging)
instead of bootstrap aggregating when building trees for each com-
ponent. Our key observation is that subsamples of reasonable size
(e.g., 60% of the training set) usually overlap.1 We explore such
overlapping property to carefully order the computation inside a
subagged ensemble so that consecutive samples share as many data
points as possible. This makes it possible to transfer statistics of
model construction from previous sample to the next one with a
much smaller cost compared to building model from scratch. Our
experiments show that we can achieve up to 3.7x speedup compared
to bagged ensembles with comparable accuracy.

Finally, we demonstrate our methodology of finding global ex-
planations for real applications at Alipay; predicting whether a
user wants to renew his/her financial product. When the financial
product is about to mature, Alipay’s automated financial assistant
will first ask the user whether to renew the financial product. If user
decides not to renew now, the system will try to keep the user by
asking whether he/she wants to find lower-risk products within the
same category or try out other assets. Understanding patterns of
customer behaviors is important for improving key metrics, such as
click through rate (CTR). In this application, we want to find what
characteristics of our customer are leaning towards a particular
action in a dialogue flow, and how much they contribute, so that
we can develop strategies that promote interaction rate. We have
deployed several strategies from the findings of those explanations
and found those strategies achieved significant lift on key metrics
through online experiments.

In summary, we make the following contributions in this paper.
• We propose to use subagged shallow trees as base learners
in GAMs.

1Recall that there are about 63% of unique points inside a bootstrap sample.
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• Wepresent a novel algorithm that speeds up the computation
of subagged ensemble.
• We provide experiments to demonstrate the efficiency and
accuracy of our proposed methods.
• We demonstrate our methodology of finding global explana-
tions on a real application at Alipay.

The rest of this paper is organized as follows. Section 2 presents
preliminaries. Our approach is discussed in Section 3. Experimental
results on public datasets are presented in Section 4. We present
online experimental results on a real application at Alipay in Sec-
tion 5. Related work is presented in Section 6 and we conclude the
paper in Section 7.

2 PRELIMINARIES
Let D = {(x i ,yi )}Ni=1 denote a dataset of size N , where x i =
(xi1, ..., xip ) is a feature vector withp features andyi is the response.
Let x = (x1, ..., xp ) denote the features in the dataset. Additionally,
each data point may have a weightwi . In this paper, we consider re-
gression problems where yi ∈ R and binary classification problems
where yi ∈ {0, 1}. Let [n] denote the set {1, 2, ...,n}.

2.1 GAM Fitting via Cyclic Gradient Boosting
One of the most popular GAM fitting algorithms is cyclic gradient
boosting with bagged shallow trees [14]. It follows a variant of
multiple additive regression trees (MART) algorithm that aims to
find a function F =

∑
j fj to minimize the following objective

function,

L(y, F (x)), (2)

where L(·, ·) is a non-negative convex loss function. When L is
squared loss, our problem becomes a regression problem and if L
is logistic loss, we are dealing with a binary classification problem.

Algorithm 1 and Algorithm 2 summarize the optimization pro-
cedure for regression and classification problems, respectively. We
first create bootstrap samples of size B (Line 2); Sb is a multi-set of
selected indices in D. For each boosting pass, we cycle through all
the features (Line 3-4) and construct the (pseudo) residual ri ’s w.r.t.
feature j (Line 5), the negative gradients in functional space [8].
For regression problems, this is equivalent to ri = yi − F (x i ). For
classification problems, the pseudo residual is ri = yi − pi and
pi = 1/(1 + exp(−F (x i )). We then run bootstrap aggregating (bag-
ging) and fit trees on each bootstrap sample to those residuals (Line
6-7). For classification problems, we further take a Newton-Raphson
step using a diagonal approximation to the Hession to update the
prediction γl for leaf l (Line 8 in Algorithm 2),

γl =

∑
x i ∈l ri∑

x i ∈l |ri |(1 − |ri |)
. (3)

Finally a learning rate ν is applied on the bagged ensemble and we
update the shape function fj (Line 8 in Algorithm 1 and Line 9 in
Algorithm 2).

For identifiability, each fj is usually centered (i.e., E[fj ] = 0)
and an intercept β0 is added accordingly to the model as shown in
Equation (1).

Algorithm 1 GAM for regression

1: fj ← 0, for j ∈ [p]
2: Sb ← create a bootstrap sample from [N ], for b ∈ [B]
3: form = 1 toM do
4: for j = 1 to p do
5: ri ← yi − F (x i ), for i ∈ [N ]
6: for b = 1 to B do
7: Tjb ← a regression tree of L leaves trained on

{(xi j , ri )|i ∈ Sb }

8: fj ← fj + ν
1
B
∑B
b=1Tjb

Algorithm 2 GAM for binary classification (MART)

1: fj ← 0, for j ∈ [p]
2: Sb ← create a bootstrap sample from [N ], for b ∈ [B]
3: form = 1 toM do
4: for j = 1 to p do
5: ri ← yi − pi , for i ∈ [N ]
6: for b = 1 to B do
7: Tjb ← a regression tree of L leaves trained on

{(xi j , ri )|i ∈ Sb }
8: UpdateTjb using Newton-Raphson step as shown in (3)
9: fj ← fj + ν

1
B
∑B
b=1Tjb

Algorithm 3 Histogram Construction (MART)

1: for i = 1 to N do
2: v ← xi j
3: H (j)(v).r ← H (j)(v).r + riwi
4: H (j)(v).h ← H (j)(v).h + |ri |(1 − |ri |)wi
5: H (j)(v).w ← H (j)(v).w +wi

2.2 Line Cutting
For practical implementation, standard regression tree may not
be the optimal choice. As suggested by Lou et al. [15], building
such single-feature regression tree is equivalent to cutting on a line,
which can be made more efficient. We also discretize each feature
into at most 256 equi-frequency bins to avoid feature sorting. Such
discretization is usually enough to achieve high scalability without
hurting accuracy [15].

The essential statistics of line cutting (building single-feature
regression tree) are histograms. Let H (j)(v).r and H (j)(v).w denote
the weighted sum of responses (first order information) and weights
when x j = v , respectively. To facilitate Newton-Raphson step in
Algorithm 2, we useH (j)(v).h to denote weighted sum of |ri |(1−|ri |)
for x j = v (second order information). Algorithm 3 summarizes
the construction of a histogram for MART algorithm. Note that on
Line 3, we compute the weighted sum of responses.

We then make greedy cuts to minimize the variance in current
branch (same as standard regression tree). Figure 1 illustrates an
example of line cutting on a histogram of size 5. To see why line
cutting is more efficient than standard regression tree, we note that
the histograms only need to be constructed once (as opposed to
re-constructing histograms each time after a split in standard re-
gression tree). Thus, histogram is the only statistics that we need to
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Figure 1: Line cutting on histograms.

build a regression model. For classification problems, note that the
nominator in Equation (3) can be easily computed by aggregating
H (j)(v).r , and the denominator is the aggregation of H (j)(v).h.

It is easy to see that when histograms are complete, the complex-
ity of line cutting is O(|H |), where |H | is the size of the histogram.

3 OUR APPROACH
In this section, we present our approach to improve the training
efficiency of GAM. We start with subagging in Section 3.1. In Sec-
tion 3.2, we propose a novel algorithm to speed up the computation
of subagged ensemble. For classification problems, we present a
variant of LogitBoost algorithm in Section 3.3.

3.1 Subsample Aggregating
In this paper, we introduce subsample aggregating (subagging)
in place of bootstrap aggregating (bagging) when building shape
functions in GAMs. Unlike bootstrap sampling, which is random
sampling with replacement, subsample is random sampling without
replacement.

In this work, we use parameter α to denote the subsampling
ratio; we sample αN points for each subsample, e.g., α = 0.6 means
we subsample 60% of the data. We then build regression models on
those subsamples and form an ensemble accordingly. As we will
see in Section 4, using subagging in place of bagging yields models
with comparable accuracy.

3.2 Fast Subagging
We note that subsamples of reasonable size (e.g., 60% of the training
set) usually overlap. We can explore such overlapping property
to carefully order the computation inside a subagged ensemble so
that consecutive samples share as many data points as possible.
Recall that histogram is the only statistics to build regression model
in GAM fitting, such overlapping property makes it possible to
transfer the histogram from previous sample to the next one with
a much smaller cost compared to building model from scratch. We
start by defining the cost from one sample to another.

3.2.1 Cost between Two Subsamples. Without loss of generality, let
us consider two subsamples Si and Sj . Denoting the histogram on
Si as Hi and histogram on Sj as Hj , the cost of transferring Hi to
Hj can be defined as |Si ∪Sj | − 2|Si ∩Sj |. This cost can be further
decomposed into two parts; ∆+i j = Sj − Si (the points to add to Hi )
and ∆−i j = Si −Sj (the points to remove fromHi ). When the context
is clear, we use ∆i j = (∆+i j ,∆

−
i j ) to denote the additional data points

to scan in the dataset, and |∆i j | = |∆+i j | + |∆
−
i j | to denote the cost

O.start 1 2 3 3

O.end 2 3 4 5

S2 S3

S1

S4 S5

Figure 2: Computation ordering for a set of subsamples.

Algorithm 4 Computing Subagging Ordering

1: Sb ← create a subsample from [N ], for b ∈ [B]
2: for i = 1 to B − 1 do
3: for j = i + 1 to B do
4: di j ← |Si ∪ Sj | − 2|Si ∩ Sj |
5: MST ← minimum spanning tree on G = ({Sb }, {di j })
6: Sv ← a random element in {Sb }
7: O ← BFS(Sv ,MST )

between two subsamples. We note that, because of this sampling
without replacement property, we can achieve a relatively low cost
to transfer histogram from one sample to another; the same is not
easy for bootstrap samples.

3.2.2 Computation Ordering. With the cost between two samples,
it is now possible to carefully order the computation inside a sub-
agged ensemble to minimize the overall cost.

Algorithm 4 summarizes the procedure of generating the compu-
tation ordering. We first model the subsamples inside an ensemble
(typically of size 50 or 100) as nodes in a graph, with edges repre-
senting the cost to transfer from one sample to another (Line 1-4).
Such graph is a clique and we observe that the cost minimization
problem is equivalent to finding minimum spanning tree in this
clique (Line 5). Once we have computed the minimum spanning
tree, we randomly pick a node (subsample) as the starting point and
run breadth-first search (BFS) to generate the computation ordering
O (Line 6-7). We use O.start and O.end to denote the vectors for
starting sample and target samples, respectively.

Figure 2 shows an example of 5 subsamples and their computa-
tion ordering O. We start with sample S1, build the histogram H1
and use ∆12 to transfer H1 into H2. Once we have H2, we can use
∆23 to compute histogram H3. Finally, H3 will be the starting point
to compute H4 and H5. Note that we only do a full scan once when
generating the histogram on S1. For the remaining histograms, we
only need to scan data points as indexed in ∆i j and therefore avoid
full scans of the dataset.

To demonstrate the effectiveness of such computation ordering,
we run a simulation with α ∈ {0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80}.
For each α we create 100 subsamples, Figure 3 shows the average
ratio of data points to be scanned. As we can see, with such his-
togram transferring, we only need to scan less than 50% of the data
points to build a new histogram on the next sample. We do not
consider α lower than 0.5 since it causes us to scan more points
for constructing new histograms. As we will see in Section 4, this
range of α is enough to produce accurate models while achieving
high training efficiency.
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Figure 3: Ratio of points to scan vs. α .

Algorithm 5 GAM for binary classification (Logit)

1: fj ← 0, for j ∈ [p]
2: Sb ← create a bootstrap sample or subsample from [N ], for
b ∈ [B]

3: form = 1 toM do
4: for j = 1 to p do
5: ri ← yi − pi , for i ∈ [N ]
6: wi ← pi (1 − pi ), for i ∈ [N ]
7: for b = 1 to B do
8: Tjb ← a robust regression tree of L leaves trained on

{(xi j , ri )|i ∈ Sb } with weight {wi |i ∈ Sb }

9: fj ← fj + ν
1
B
∑B
b=1Tjb

Algorithm 6 Histogram Construction (Logit)

1: for i = 1 to N do
2: v ← xi j
3: H (j)(v).r ← H (j)(v).r + ri
4: H (j)(v).w ← H (j)(v).w +wi

3.3 LogitBoost
For classification problems, we recognize that LogitBoost [9] usu-
ally achieves more accurate model than MART [13]. The main
difference is that MART uses first order information to grow trees
and second order information to compute leaf values whereas Log-
itBoost uses second order information to do both. Therefore, we
propose a variant of LogitBoost for GAM fitting on classification
problems.

Algorithm 5 summarizes our procedure. The main difference
between Algorithm 2 and 5 is that 1) we train a robust regression
tree and 2) we get rid of the Newton-Raphson step in Algorithm 2.
Robust regression trees is numerically stable implementation in
LogitBoost [13]. In our implementation, we use a robust line cutting
procedure for better efficiency and histogram is still the only statis-
tics that we need to build a regression model. Algorithm 6 describes
our procedure of building a histogram in robust line cutting. Note
that in Line 3, we do not use weighted sum of responses. This is
because we already set the weight for each point as pi (1−pi ) (Line
6 in Algorithm 5). When computing leaf values, we will get the
values computed from second order information. We will see in
Section 4 that by getting rid of the Newton-Raphson step, we can
further improve the training efficiency.

Dataset Size Attributes %Pos
CompAct 8192 22 -

Pole 15000 49 -
Bike 17379 15 -

CalHousing 20640 9 -
Superconductor 21263 82 -

Magic 19020 11 64.84
Letter 20000 17 49.70
Bank 45221 13 11.70
Adult 48842 15 76.07
Credit 150000 11 6.68

Table 1: Datasets.

4 EXPERIMENTS ON PUBLIC DATASETS
In this section we report experimental results on public classifi-
cation and regression datasets. Our approach is implemented in
MLTK.2

4.1 Datasets
Table 1 summarizes the ten datasets used in our experiments. Five
are regression problems: “CompAct” is from the Delve repository
and describes the state of multiuser computers.3 “Pole” describes a
telecommunication problem [20]. The “Bike” datasets is from the
UCI repository.4 “CalHousing” describes how housing prices de-
pend on census variables [17] . “Superconductor” is to predict the
superconducting critical temperature [10]. The “Magic”, “Letter”,
“Bank” and “Adult” are binary classification problems: all of them
are from the UCI repository. We convert “Letter” into binary clas-
sification using the same method in [6]. “Credit” is a dataset for
predicting probability that someone will experience financial dis-
tress in the next two years.5 Note that we choose both balanced and
unbalanced classification datasets to demonstrate the effectiveness
of our method.

4.2 Model Accuracy
In this section, we report experimental results of model accuracy on
our datasets. We use the implementation in MLTK as our baseline
for GAM fitting algorithm (MART-Bagging). For this set of experi-
ments, we consider subsampling ratio α ∈ {0.50, 0.55, ..., 0.75, 0.80}
and we fix the learning rate ν = 0.01. Following [15], we discretize
all continuous features into at most 256 bins using equi-frequency
discretization and fix the number of leaves for each tree as 3. In
all our experiments, we set the bagging or subagging size to be
100. We randomly partition the dataset into training (64% of the
data), validation (16% of the data) and test sets (20% of the data).
For regression problems we report root mean squared error (RMSE)
and for classification problems we report area under ROC curve
(AUC). We set the maximum number of iterations to 10,000 and do
model selection using validation set. All experiments are repeated 5
times and we report mean and standard deviation of the evaluation
results on test sets.

2https://github.com/yinlou/mltk
3http://www.cs.toronto.edu/~delve/data/datasets.html
4http://archive.ics.uci.edu/ml/
5https://www.kaggle.com/c/GiveMeSomeCredit/data

https://github.com/yinlou/mltk
http://www.cs.toronto.edu/~delve/data/datasets.html
http://archive.ics.uci.edu/ml/
https://www.kaggle.com/c/GiveMeSomeCredit/data


Model CompAct Pole Bike CalHousing Superconductor
MART-Bagging 2.6635±0.1124 21.4300±0.1734 1.0004±0.0121 5.7372±0.1182 11.2624±0.1638

MART-Subagging-0.50 2.6648±0.1131 21.4564±0.1645 1.0004±0.0122 5.7335±0.1144 11.2638±0.1731
MART-Subagging-0.55 2.6684±0.1112 21.4511±0.1712 1.0003±0.0119 5.7313±0.1210 11.2711±0.1676
MART-Subagging-0.60 2.6641±0.3750 21.4524±0.1722 1.0005±0.0121 5.7283±0.1170 11.2536±0.1676
MART-Subagging-0.65 2.6634±0.1161 21.4507±0.1675 1.0006±0.0119 5.7291±0.1163 11.2410±0.1572
MART-Subagging-0.70 2.6648±0.1174 21.4440±0.1709 1.0004±0.0121 5.7258±0.1136 11.2511±0.1491
MART-Subagging-0.75 2.6687±0.1165 21.4457±0.1757 1.0004±0.0122 5.7239±0.1125 11.2537±0.1498
MART-Subagging-0.80 2.6678±0.1201 21.4385±0.1823 1.0003±0.0120 5.7252±0.1140 11.2667±0.1522

Table 2: RMSE for regression datasets. Lower is better.

Model Magic Letter Bank Adult Credit
MART-Bagging 0.9039±0.0066 0.9108±0.0056 0.9156±0.0030 0.9278±0.0022 0.8620±0.0032

MART-Subagging-0.50 0.9047±0.0063 0.9110±0.0058 0.9159±0.0032 0.9281±0.0022 0.8621±0.0032
MART-Subagging-0.55 0.9048±0.0066 0.9111±0.0058 0.9160±0.0032 0.9282±0.0023 0.8621±0.0032
MART-Subagging-0.60 0.9047±0.0066 0.9110±0.0057 0.9159±0.0032 0.9281±0.0023 0.8620±0.0032
MART-Subagging-0.65 0.9044±0.0067 0.9111±0.0059 0.9158±0.0029 0.9282±0.0023 0.8620±0.0032
MART-Subagging-0.70 0.9045±0.0066 0.9112±0.0058 0.9158±0.0031 0.9282±0.0024 0.8620±0.0033
MART-Subagging-0.75 0.9046±0.0065 0.9112±0.0058 0.9158±0.0031 0.9282±0.0024 0.8619±0.0032
MART-Subagging-0.80 0.9044±0.0065 0.9113±0.0057 0.9158±0.0031 0.9283±0.0023 0.8619±0.0032

Logit-Bagging 0.9045±0.0066 0.9112±0.0057 0.9159±0.0029 0.9279±0.0024 0.8620±0.0033
Logit-Subagging-0.50 0.9050±0.0063 0.9112±0.0059 0.9161±0.0031 0.9280±0.0024 0.8621±0.0033
Logit-Subagging-0.55 0.9050±0.0066 0.9113±0.0058 0.9161±0.0031 0.9281±0.0023 0.8620±0.0033
Logit-Subagging-0.60 0.9048±0.0066 0.9112±0.0059 0.9160±0.0030 0.9281±0.0024 0.8621±0.0034
Logit-Subagging-0.65 0.9047±0.0069 0.9112±0.0059 0.9159±0.0030 0.9281±0.0023 0.8621±0.0033
Logit-Subagging-0.70 0.9045±0.0068 0.9112±0.0058 0.9159±0.0030 0.9278±0.0022 0.8620±0.0034
Logit-Subagging-0.75 0.9048±0.0066 0.9111±0.0059 0.9159±0.0030 0.9281±0.0023 0.8619±0.0033
Logit-Subagging-0.80 0.9045±0.0066 0.9112±0.0058 0.9158±0.0030 0.9283±0.0023 0.8620±0.0033

Table 3: AUC for classification datasets. Higher is better.

Table 2 and Table 3 show the results on regression and classifica-
tion problems, respectively. We first observe that with subagging,
we achieve comparable accuracy of MART-Bagging. In addition, it
is interesting to see that GAM fitting algorithms based on Logit-
Boost also achieve comparable accuracy of MART-Bagging. This
observation is different from standard gradient boosting, where
LogitBoost demonstrates superior accuracy over MART [13]. This
is probably because of the GAM training method; we only update
one single feature at a time. Nevertheless, as we will see in the
next section that by getting rid of Newton-Raphson step in MART,
our variant of LogitBoost algorithm further improves the training
efficiency.

4.3 Training Efficiency
In this section, we report experimental results of training efficiency
on our datasets. Since we only need to generate the computation
ordering once before we enter the gradient boosting stage, this step
is usually negligible for the whole training process and we compare
the end-to-end training efficiency.

We fix the number of iterations in this set of experiments and run-
ning time of subagging is normalized by the running time of MART-
Bagging, since MART-Bagging is our baseline method. Figure 4
illustrates the running time ratio compared with MART-Bagging
for regression and classification problems, respectively. We see
that we can save about 30-40% of time when training subagged

tree ensembles for regression problems and we save up to 70% of
time when training subagged trees in MART for classification prob-
lems. This is because we carefully order the computation inside a
subagging ensemble so that key statistics can be transferred from
one sample to another in a much lower cost compared. Recall that
there are about 63% of unique points inside a bootstrap sample.
Even for subsamples of similar size (e.g., α = 0.6 or 0.65), we still
achieve about 1.67x speedup. We also observe that, for LogitBoost,
we can further improve the training efficiency, since we get rid of
the need to cumulate second order information and the additional
Netwon-Raphson step.

To summarize, with MART-Subagging, we can achieve up to
3.7x speedup, and with Logit-Subagging, we can achieve up to 7x
speedup. In real applications, we recommend fixing α to 0.65, which
corresponds to an average of 40% saving for regression problems
and 70% saving for classification problems.

5 EXPERIMENTS ON ALIPAY’S DATASETS
Over the past two years since it was launched, Alipay’s automated
online financial assistant has been providing full lifecycle financial
services for over 1 million Alipay users. In this work, we focus on
the case where a user’s financial product is about to mature.

There are two major entries in Alipay’s app that can trigger the
dialogue flow of the chatbot for this application, as illustrated in
Figure 5. The first entry is on total asset page. The message in the
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Figure 4: Training efficiency on regression and classification
problems. Running time of each method is normalized by
that of MART-Bagging.

Type No. Example
Portfolio feat. 12 # of mutual funds
Page-level feat. 304 # of clicks on news pages in 3 days
Region-level feat. 104 # of clicks on account positions in 15 days
Gain/Loss feat. 5 Total gain of mutual funds in 7 days

User trading behavior feat. 38 # of trades in 30 days
Market-level feat. 37 # of positive events in 7 days
Promotional feat. 16 Whether a coupon was redeemed
User profile feat. 121 Education level

Table 4: Features for Alipay’s Datasets.

red box of Figure 5(a) will notify the user about close-to-mature
financial product. There is no message for entry 2 as shown in
Figure 5(b). Whenever the user clicks the box area in these two
entries, he/she will be redirected to enter a dialogue flow. Figure 5(c)
shows an example of a dialogue and Figure 6 illustrates the complete
flow that a usermight go through via the chatbot. “Overview” shows
the details of the close-to-mature financial product. “Renew” and

Renew

Not Now

Overview

(a) Entry 1 (b) Entry 2 (c) Dialogue Flow

Figure 5: Product Overview. Both entries can trigger the dia-
logue flow on the right.

Overview

Renew

Confirm Maybe Later

Not Now

Find Lower-
Risk Products

Try Other 
Assets

5.09%

0.12%

18.34%

84.17% 14.24% 5.79% 14.75% 38.64%

用户特征分析
Strategy BStrategy A Strategy C

Figure 6: Illustration of financial product renewal flow.

“Not Now” are the two choices for the user to select. If the user
decided not to renew now, the system would try to keep the user
by asking whether he/she wants to find lower-risk products within
the same category or try out other assets. Empirical transition
probabilities are shown on the edges in Figure 6. Note that at any
stage a user might drop, so the outgoing edges may not necessarily
sum to 1.

5.1 Global Explanations
To provide personalized experience interacting with the chatbot,
we do not want users to always start with “Overview”, as it might
be tedious for users with particular needs to go through the whole
flow from the beginning. Hence, our goal in this work is to use GAM
to find global explanations to gain insights from the data, so that
we can provide different users with different entries in the dialogue.
To this end, we have collected logs of users interacting with our
system from 01/08/2020 to 02/02/2020 (users always started from
the beginning in this period).6 Table 4 shows the different types of
our 637 features with examples.

6The authors declare that 1) the data set does not contain any Personal Identifiable
Information (PII), 2) the data set is desensitized and encrypted, 3) adequate data
protection was carried out during the experiment to prevent the risk of data copy
leakage, and the data set was destroyed after the experiment, and 4) the data set is
only used for academic research, it does not represent any real business situation.



Table 5 lists 4 scenarios that we are interested in for this par-
ticular application. We apply our fast GAM training algorithm
(LogitBoost-Subagging-0.65) to those 4 scenarios to find global ex-
planations with maximum 100 iterations. Hyperparamers are tuned
on validation set. We also compare the accuracy of GAMs with
XGBoost [7]. We tune the tree depth from 2 to 10 on validation
set. All experiments are repeated 5 times. Table 5 demonstrates the
AUC on the test sets for our fast GAM and XGBoost. We see that
the accuracy of GAM is comparable to that of XGBoost, while the
intelligibility of GAM allows us to find global explanations of the
model.

Figure 7 shows some selected shape functions for those sce-
narios.7 On scenario 1, we see that women is more likely to click
“Renew”. On scenario 2, we see that users who have fewer clicks
on holdings page are more likely to click “Renew”; this is probably
because for such users, they belong to set-and-forget category, who
probably care more on long-term capital gains. On the 3rd scenario,
there is a strong positive correlation between account balance and
clicking “Find Lower-Risk Products”. This is reasonable since for
users with large account balance, they are more risk averse. On the
last scenario, we see that users who frequently visit information
pages of different mutual funds are more likely to click “Try Other
Assets”.

5.2 Online Evaluation
Based on the findings in last section, we have developed 3 strategies
as follows. Note that each strategy will only come into play if a
user has already gone through part of the dialogue flow but left
with no action, and each strategy only affects the starting point of
the dialogue flow when users come back and are redirected from
the two entries as shown in Figure 5.
• Strategy A: For woman users or users who have fewer clicks
on account position page , skip the “Overview” stage and
directly ask them whether to renew the product. On Entry 1,
we will also change the displayed message to “Do you want
to renew your financial product?”.
• Strategy B: For users with high account balance, the dialogue
will start directly with “Find Lower-Risk Products”. Entry
1 will display “Let us find lower-risk financial products for
you”.
• Strategy C: For users who frequently visit information pages
of different mutual funds, the dialogue will jump to “Try
Other Assets”. Entry 1’s message will be “Do you want to
find other assets?”.

It is possible that different strategies might overlap, and we
set strategy A with highest priority and strategy B with lowest
priority. We have deployed these strategies online and conducted
A/B testing from 03/28/2020 to 04/03/2020. All experiments except
CTR on entry 2 are statistically significant with p-value < 0.00001.
Figure 8(a) shows the CTR on Entry 1. By employing personalized
messages on Entry 1, the average lift is about 19%. Figure 8(b)
illustrates (1 - bounce rate) for dialogue flow triggered by Entry 1;
the average lift is about 9%. Bounce rate (BR) is a measure of users
who enter and leave rather than continuing interacting with our
system. We see that by employing personalized entry and dialogue
7Some features are normalized so as not to disclose the actual range.

flow, we increase the retention rate of user interacting with our
system. Figure 9(a) shows the CTR on Entry 2. Since there is no
message showing on these two versions, we see little difference on
CTR as expected. Figure 9(b) illustrates (1 - bounce rate) for dialogue
flow triggered by Entry 2. We see a lift of about 25%, suggesting
the effectiveness of our strategies. These strategies are now live in
production.

6 RELATEDWORK
6.1 Fitting Generalized Additive Models
Tan et al. compared tree ensembles with other local and global
explanation methods and argued that global additive explanations
provide a more complete view than feature attribution [18]. GAM
was employed as their global additive explanation method. There
are a variety of choices to train GAMs. Shape functions in GAMs
can be represented by different functions, including splines [21],
regression trees, or tree ensembles [2]. There are also two popular
methods of fitting GAMs (independent of shape functions): Backfit-
ting [11] and gradient boosting [8]. Previous research showed that
gradient boosting with ensembles of shallow regression trees is the
most accurate method among a number of alternatives [14]. Re-
cently researchers are trying neural nets as shape functions [1, 23].
Our work focus on tree ensembles as shape functions with the goal
of improving training efficiency.

6.2 Subsample Aggregating
Subsample aggregating (subagging) employs subsampling instead of
bootstrap sampling for the aggregation. The complete subagging is
aggregated by enumerating all possible samples of sizeM (M < N ).
When M = N /2, it is called half subagging. Buja and Stuetzle
showed that when the estimator is a U-statistic [12], half subagging
is exactly equivalent to bagging [4]. They also observed that half
subagging yields very similar empirical results to bagging when
the estimator is decision tree.

However, building
(N
M
)
models is computationally infeasible and

in practice one usually only aggregates B subsamples. Mentch and
Hooker demonstrated such method is asymptotically normal and
they explored such property to quantify uncertainty in random
forests [16].

7 CONCLUSION
In this work, we propose to use subsample aggregating (subag-
ging) in place of bagging in the GAM fitting algorithm. We show
empirically that using subagged shallow trees can lead to models
with comparable accuracy. In addition, we observe that subsamples
of reasonable size usually overlap. We explore such property and
present a novel algorithm to speed up the computation of subagged
ensemble with no loss of accuracy. For classification problems, we
propose a variant of LogitBoost algorithm that can further im-
prove the training efficiency. Our extensive experiments on public
datasets demonstrate that our proposed method can achieve up to
3.7x speedup over bagged ensembles comparable accuracy. Finally,
we demonstrate our methodology of finding global explanations on
a real application at Alipay. We have developed several strategies
from the findings of those explanations and found those strategies
achieved significant lift on keymetrics through online experiments.



Name Description # of Pos # of Neg %Pos GAM XGBoost
Scenario 1 Renew vs. Not Now + Drop 5540 82511 6.29 0.7151±0.0166 0.7212±0.0130
Scenario 2 Renew vs. Not Now 5540 14247 28.00 0.7732±0.0157 0.7835±0.0153
Scenario 3 Find Lower-Risk Products vs. Not Now + Drop 1801 12116 12.94 0.6782±0.0294 0.6710±0.0281
Scenario 4 Try Other Assets vs. Not Now + Drop 1064 12116 8.07 0.6215±0.0303 0.6185±0.0293

Table 5: Scenario descriptions and AUC results. Higher is better.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

(a) Gender (b) # of clicks on (c) Account balance (d) # of clicks
account positions in 3 days of product detail in 3 days

Figure 7: Selected feature shape plots on scenario 1-4. Continuous features are normalized.
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Figure 8: Online experimental results on Entry 1.
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